

Danfoss

General Characteristics

Model number (on compressor nameplate)	MLZ015T4LP9A	MLZ015T4LP9A			
Code number for Singlepack*	121U8629	121L8629			
Code number for Industrial pack**	121U8628	121L8628			
Drawing number	0XC6300B-1	0XC6300B-1			
Suction and discharge connections	Brazed	Brazed			
Suction connection	3/4 " ODF	3/4 " ODF			
Discharge connection	1/2 " ODF	1/2 " ODF			
Oil sight glass	Threaded	Threaded			
Oil equalisation connection	None	None			
Oil drain connection	1/4" flare	1/4" flare			
LP gauge port	None	None			
IPR valve	32 bar	32 bar			
Swept volume	33.77 c	m3/rev			
Displacement @ Nominal speed	5.9 m3/h @ 2900 rpm	- 7.1 m3/h @ 3500 rpm			
Net weight	31	kg			
Oil charge	1.06 litre	e, POE			
Maximum system test pressure Low Side / High side	- bar(g)	/ - bar(g)			
Maximum differential test pressure	- k	oar			
Maximum number of starts per hour	1	2			
Refrigerant charge limit	3.63	3 kg			
Approved refrigerants	R404A,R134a,R407A/F,R448A,R449A,R452A,R513A,R22				

Electrical Characteristics

Nominal voltage	380-400V/3/50Hz - 460V/3/60Hz
Voltage range	340-460 V @ 50Hz - 414-506 V @ 60Hz
Winding resistance between phases 1-2 +/- 7% at 25℃	6.724 Ω
Winding resistance between phases 1-3 +/- 7% at 25℃	4.952 Ω
Winding resistance between phases 2-3 +/- 7% at 25℃	6.724 Ω
Rated Load Amps (RLA)	4.5 A
Maximum Continuous Current (MCC)	7 A
Locked Rotor Amps (LRA)	30 A
Motor protection	Internal overload protector

Recommended Installation torques

Suction Rotolock nut or valve	0 Nm
Discharge Rotolock nut or valve	0 Nm
Oil sight glass	52.5 Nm
Power connections / Earth connection	0 Nm / 0 Nm

Parts shipped with compressor

· · · · · · · · · · · · · · · · · · ·
Mounting kit with grommets and sleeves
Initial oil charge
Installation instructions

Approvals: CE certified, -, -

 $\hbox{*Singlepack: Compressor in cardboard box. 1210...\ optimised for Danfoss\ pallet, 1200...\ optimised for\ US\ pallet}$

Dimensions

D=164.5 mm H=412 mm H1=250 mm H2=379 mm H3=- mm

Terminal box

IP22 1:

3:

Spade connectors 1/4"

2: Earth connection

Power cable passage

^{**}Industrial pack: 121U..: 12 unboxed compressors on Danfoss pallet. 120U..: 16 unboxed compressors on US pallet

Datasheet, accessories and spare parts

Gasket, 1"

Scroll compressor, MLZ015T4

Rotolock accessories, suction side	Code no.
Solder sleeve, P04 (1-1/4" Rotolock, 3/4" ODF)	8153008
Rotolock valve, V04 (1-1/4" Rotolock, 3/4" ODF)	8168029
Gasket, 1-1/4"	8156131
	,

 Rotolock accessories, discharge side
 Code no.

 Solder sleeve, P06 (1" Rotolock, 1/2" ODF)
 8153007

 Rotolock valve, V06 (1" Rotolock, 1/2" ODF)
 8168031

 Rotolock accessories, sets
 Code no.

 Solder sleeve adapter set (1-1/4" Rotolock, 3/4" ODF), (1" Rotolock, 1/2" ODF)
 120Z0126

 Gasket set 1" 1-1/4" 1-3/4", OSG gaskets black & white
 8156009

Gasket set, 1", 1-1/4", 1-3/4", OSG gaskets black & white	8156009
Oil / lubricants	Code no.
POE lubricant, 215PZ(PL46HB), 1 litre can	120Z0648

Crankcase heatersCode no.Belt type crankcase heater, 70 W, 240 V, CE mark, UL120Z5040Belt type crankcase heater, 70 W, 400/460V, CE mark, UL120Z5041

Miscellaneous accessories	Code no.
Acoustic hood	120Z5083
Discharge thermostat kit	7750009
IP54 upgrade kit	118U0056

Spare parts	Code no.
Mounting kit for 1 scroll compressor including 4 grommets, 4 sleeves, 4 bolts, 4 washers	120Z5005
Terminal box cover	120Z5015

Solder sleeve adapter set

1: Rotolock adapter (Suc & Dis)

2: Gasket (Suc & Dis)

8156130

- 3: Solder sleeve (Suc & Dis)
- 4: Rotolock nut (Suc & Dis)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Superheat = 10 K

R22

Cond. temp. in				Evapora	ating temperatur	e in °C (to)			
°C (tc)	-20	-15	-10	-5	0	5	10		
<u>.</u>					•				
Cooling capacity	y in W	_							
16	3 069	3 699	4 420	5 247	-	-	-	-	-
20	2 929	3 556	4 273	5 094	6 030	-	-	-	-
30	2 595	3 200	3 891	4 681	5 583	6 609	7 769	-	-
40	2 288	2 850	3 492	4 230	5 077	6 045	7 145	-	-
50	-	2 512	3 085	3 749	4 519	5 407	6 427	-	-
60	-	-	-	3 245	3 916	4 704	5 622	-	-
68	-	-	-	-	-	4 098	4 920	-	-
Power input in V	V	1	T	T			T	1	
16	773	785	803	829	-	-	-	-	-
20	858	870	886	907	935	-	-	-	-
30	1 082	1 098	1 113	1 129	1 147	1 168	1 194	-	-
40	1 329	1 355	1 377	1 395	1 410	1 424	1 437	-	-
50	-	1 652	1 687	1 713	1 733	1 746	1 755	-	-
60	-	-	-	2 094	2 125	2 145	2 156	-	-
68	-	-	-	-	-	2 525	2 543	-	-
Current consum	ption in A								
16	1.49	1.51	1.55	1.59	-	-	-	-	-
20	1.65	1.67	1.71	1.75	1.80	-	-	-	-
30	2.08	2.11	2.14	2.17	2.21	2.25	2.30	-	-
40	2.56	2.61	2.65	2.68	2.71	2.74	2.77	-	-
50	-	3.18	3.25	3.30	3.33	3.36	3.38	-	-
60	-	-	-	4.03	4.09	4.13	4.15		-
68	-	-	-	-	-	4.86	4.89	-	-
Mass flow in kg/	h 'h								
16	58	69	83	98	-	-	-	-	-
20	57	69	82	97	115	-	-	-	-
30	55	67	80	96	114	133	155	-	-
40	53	65	78	94	112	132	154		-
50	-	62	75	91	109	129	151	-	-
60	-	-	-	86	104	124	146	-	-
68	-	-	-	-	-	117	140		-
Coefficient of pe	erformance (C.C	D.P.)							
16	3.97	4.71	5.50	6.33	-	-	-	-	-
20	3.41	4.09	4.82	5.61	6.45	=	-	-	-
30	2.40	2.92	3.50	4.15	4.87	5.66	6.51	_	-
40	1.72	2.10	2.54	3.03	3.60	4.25	4.97	-	-
50	-	1.52	1.83	2.19	2.61	3.10	3.66	-	-
60	-	-	-	1.55	1.84	2.19	2.61	-	-
68	-	-	-	-	-	1.62	1.94	-	-
		-	•	•	•	•	-	•	•
Nominal perforn	nance at to = -1	0 °C, tc = 45 °C				Pressure switch			
S 11 16		0.000	10/			Massines IID assi		20.0	

C.O.P.

Cooling capacity

Current consumption

Power input

Mass flow

to: Evaporating temperature at dew point tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Maximum HP switch setting	29.8	bar(g)	
Minimum LP switch setting	0.5	bar(g)	
LP pump down setting	0.95	bar(q)	

Sound power data

Sound power level	67	dB(A)
With accoustic hood	59	dB(A)

Tolerance according EN12900

W

W

3 289

1 525

2.94

2.16

77

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R22

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-20	-15	-10	-5	0	5	10		
Cooling capacity				1	1	1	1		1
16	2 994	3 620	4 340	5 170	-	-	-	-	-
20	2 865	3 488	4 203	5 026	5 972	-	-	-	-
30	2 557	3 158	3 846	4 636	5 543	6 582	7 769	-	-
40	-	2 834	3 473	4 209	5 056	6 030	7 145	-	-
50	-	-	-	3 752	4 518	5 405	6 427	-	-
60	-	-	-	-	3 934	4 713	5 622	-	-
68	-	-	-	-	-	-	4 920	-	-
Power input in W	773	785	803	829	1	1	1		
20	858	870	886	907	935	-	-	-	-
30	1 082	1 098	1 113	1 129	1 147	1 168	1 194	-	-
40	1 082			1 395	1 410	1 424	1 437	-	-
50	-	1 355	1 377	1 713		1 746	1 755	-	-
		1	<u> </u>		1 733				
60	-	-	-	-	2 125	2 145	2 156 2 543	-	-
68	-	-	-	-	-	-	2 543	-	-
Current consump	otion in A								
16	1.49	1.51	1.55	1.59	_	-	_	-	-
20	1.65	1.67	1.71	1.75	1.80	_	_	_	-
30	2.08	2.11	2.14	2.17	2.21	2.25	2.30	-	-
40	-	2.61	2.65	2.68	2.71	2.74	2.77	_	-
50	-	-	-	3.30	3.33	3.36	3.38	_	_
60	_	_	_	-	4.09	4.13	4.15	-	_
68	-	_	-	-	-	-	4.89	-	-
			•			1			I
Mass flow in kg/h	ı								
16	51	62	76	91	-	-	-	-	-
20	50	62	75	91	109	-	-	-	-
30	48	60	74	90	108	130	155	-	-
40	-	58	72	88	107	129	154	-	-
50	-	-	-	85	104	126	151	-	-
60	-	-	-	-	99	121	146	-	-
68	-	-	-	-	-	-	140	-	-
Coefficient of per	•	1		1	ı	1	1		ı
16	3.87	4.61	5.40	6.24	-	-	-	-	-
20	3.34	4.01	4.74	5.54	6.39	-	-	-	-
30	2.36	2.88	3.46	4.11	4.83	5.64	6.51	-	-
40	-	2.09	2.52	3.02	3.59	4.24	4.97	-	-
50	-	-	-	2.19	2.61	3.10	3.66	-	-
60	-	-	-	-	1.85	2.20	2.61	-	-
	-	-	_	-	_	_	1.94	-	_

Nominal performance at to = -10 °C, tc = 45 °C	
--	--

Cooling capacity	3 283	W
Power input	1 525	W
Current consumption	2.94	Α
Mass flow	71	kg/h
C.O.P.	2.15	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}$ C , Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.8	bar(g)	
Minimum LP switch setting	0.5	bar(g)	
LP pump down setting	0.95	bar(q)	

Sound power data

Sound power level	67	dB(A)
With accoustic hood	59	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Superheat = 10 K

R22

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-20	-15	-10	-5	0	5	10		
cooling capacity	, in W								
16	3 502	4 250	5 126	6 133	-	-	-	-	-
20	3 404	4 151	5 022	6 022	7 153	-	-	-	-
30	3 072	3 802	4 647	5 611	6 700	7 916	9 259	-	-
40	2 692	3 383	4 180	5 088	6 113	7 258	8 525	-	-
50	-	2 988	3 715	4 544	5 484	6 537	7 708	-	-
60	-	-	-	4 073	4 905	5 846	6 899	-	-
68	-	-	-	-	-	5 376	6 321	-	-
Power input in V	v					•			
16	845	880	926	982	-	-	_	-	_
20	951	984	1 024	1 072	1 130	-	-	-	-
30	1 216	1 252	1 288	1 324	1 362	1 404	1 450	-	-
40	1 485	1 537	1 581	1 618	1 650	1 678	1 703	-	-
50	-	1 844	1 909	1 961	1 999	2 026	2 043	-	-
60	-	-	-	2 357	2 416	2 455	2 477	-	-
68	-	-	-	-	-	2 859	2 894	-	-
current consum	ption in A								
16	1.33	1.38	1.45	1.54	-	-	-	-	-
20	1.49	1.54	1.61	1.68	1.77	-	-	-	-
30	1.91	1.96	2.02	2.08	2.14	2.20	2.27	1	-
40	2.33	2.41	2.48	2.54	2.59	2.63	2.67	-	-
50	-	2.89	3.00	3.08	3.14	3.18	3.21	-	-
60	-	-	-	3.70	3.79	3.85	3.89	-	-
68	-	-	-	-	-	4.49	4.54	-	-
/lass flow in kg/	h								
16	68	83	100	119	-	-	-	-	-
20	68	83	100	119	141	-	-	-	-
30	66	81	99	118	140	164	189	-	-
40	63	79	96	116	139	163	189	-	-
50	-	74	92	113	136	160	186	-	-
60	-	-	-	107	131	156	183	-	-
68	-	-	-	-	-	151	178	1	-
Coefficient of pe	rformance (C.C	D.P.)							
16	4.15	4.83	5.54	6.24	-	-	-	-	-
20	3.58	4.22	4.90	5.62	6.33	-	-	-	-
30	2.53	3.04	3.61	4.24	4.92	5.64	6.39	-	-
40	1.81	2.20	2.64	3.14	3.70	4.33	5.01	-	-
50	-	1.62	1.95	2.32	2.74	3.23	3.77	-	-
		-	-	1.73	2.03	2.38	2.79	-	_
60	-	-	-	1.73	2.00	2.50	2.13	_	

Nominal performance at to = -10 °C, tc = 45 °C
--

Cooling capacity	3 941	W
Power input	1 740	W
Current consumption	2.73	Α
Mass flow	95	kg/h
C.O.P.	2.26	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.8	bar(g)	
Minimum LP switch setting	0.5	bar(g)	
LP pump down setting	0.95	bar(q)	

Sound power data

Sound power level	71	dB(A)
With accoustic hood	63	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R22

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-20	-15	-10	-5	0	5	10		
		•	•	1		•			
Cooling capacit	y in W								
16	3 417	4 159	5 032	6 043	-	-	-	-	-
20	3 330	4 071	4 940	5 941	7 084	-	-	-	-
30	3 028	3 753	4 594	5 558	6 652	7 884	9 259	-	-
40	-	3 364	4 157	5 063	6 088	7 240	8 525	-	-
50	-	-	-	4 547	5 482	6 534	7 708	-	-
60	-	-	-	-	4 928	5 857	6 899	-	-
68	-	-	-	-	-	-	6 321	-	-
Power input in \	A.								
16	845	880	926	982	-	_	_	_	_
20	951	984	1 024	1 072	1 130	_	_	_	_
30	1 216	1 252	1 288	1 324	1 362	1 404	1 450	<u>-</u>	_
40	-	1 537	1 581	1 618	1 650	1 678	1 703	_	_
50	-	-	-	1 961	1 999	2 026	2 043		_
60	-	_	_	-	2 416	2 455	2 477	-	-
68	_	_	_	_	-	-	2 894	_	_
00		1	I	I	I	I	2 00 1		
Current consum	nption in A								
16	1.33	1.38	1.45	1.54	-	-	-	-	-
20	1.49	1.54	1.61	1.68	1.77	-	-	-	-
30	1.91	1.96	2.02	2.08	2.14	2.20	2.27	-	-
40	-	2.41	2.48	2.54	2.59	2.63	2.67	-	-
50	-	-	-	3.08	3.14	3.18	3.21	-	-
60	-	-	-	-	3.79	3.85	3.89	-	-
68	-	-	-	-	-	-	4.54	-	-
Mass flow in kg	/la								
16	60	74	92	111	-	_	-	_	_
20	60	74	91	111	134	-	-		-
30	58	73	90	111	134	160	189		_
40	-	71	88	109	132	159	189		_
50		-	-	105	129	156	186	<u>-</u>	-
60	-	-	-	-	124	152	183	<u> </u>	_
68	-	-	-	-	-	-	178	<u> </u>	-
00							170		_
Coefficient of pe	erformance (C.O).P.)							
16	4.04	4.72	5.44	6.15	-	-	-	-	-
20	3.50	4.14	4.82	5.54	6.27	-	-	-	-
30	2.49	3.00	3.57	4.20	4.88	5.62	6.39	-	-
40	-	2.19	2.63	3.13	3.69	4.32	5.01	-	-
50	-	-	-	2.32	2.74	3.22	3.77	-	-
60	-	-	-	-	2.04	2.39	2.79	-	-
	-	_	_	-	_	_		-	_

Nominal performance at to = -10 °C, tc = 45 °C	3
--	---

Cooling capacity	3 934	W
Power input	1 740	W
Current consumption	2.73	Α
Mass flow	87	kg/h
C.O.P.	2.26	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}$ C , Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.8	bar(g)	
Minimum LP switch setting	0.5	bar(g)	
LP pump down setting	0.95	bar(g)	

Sound power data

Sound power level	71	dB(A)
With accoustic hood	63	dB(A)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Superheat = 10 K

R134a

Cond. temp. in	Evaporating temperature in °C (to)								
°C (tc)	-15	-10	-5	0	5	10	15		
Cooling capacity		,			1	1	,		1
22	2 020	2 554	3 186	3 924	4 778	-	-	-	-
30	1 853	2 353	2 948	3 646	4 456	5 387	-	-	-
40	1 651	2 102	2 642	3 282	4 031	4 897	5 890	-	-
50	-	1 848	2 327	2 902	3 581	4 374	5 289	-	-
60	-	-	2 001	2 503	3 105	3 816	4 646	-	-
70	-	-	-	2 083	2 600	3 223	3 960	-	-
73	-	-	-	1 953	2 443	3 038	3 746	-	-
Power input in W	618	625	631	639	648	_	1		
-		1	1			+	-	-	-
30 40	735 906	742 916	748 924	754 930	762 938	773 948	962	-	-
-		1	1			1	ł	-	
50	-	1 126	1 137	1 147	1 157	1 167	1 181	-	-
60	-	-	1 396	1 411	1 425	1 439	1 455	-	-
70	-	-	-	1 729	1 749	1 769	1 789	-	
73	-	-	-	1 836	1 858	1 880	1 902	-	-
Current consump	ation in A								
22	2.00	2.02	2.03	2.04	2.05	-	_	_	_
30	2.20	2.22	2.23	2.24	2.25	2.26	_	-	_
40	2.43	2.44	2.45	2.46	2.47	2.48	2.50	-	_
50	-	2.80	2.80	2.81	2.82	2.83	2.84		_
60	_	-	3.44	3.44	3.44	3.45	3.46	-	_
70	_	_	-	4.51	4.51	4.52	4.52	-	_
73	-	_	_	4.94	4.94	4.94	4.95	-	-
		<u> </u>							<u> </u>
Mass flow in kg/h	1								
22	43	54	66	80	96	-	-	-	-
30	43	53	65	79	95	113	-	-	-
40	42	52	64	78	94	112	133	-	-
50	-	52	63	77	93	111	132	-	-
60	-	-	62	75	91	109	130	-	-
70	-	-	-	73	89	107	127	-	-
73	-	-	-	73	88	106	126	-	-
Coefficient of per	rformance (C.C).P.)							
22	3.27	4.09	5.05	6.15	7.37	-	-	-	-
30	2.52	3.17	3.94	4.83	5.85	6.97	-	-	-
40	1.82	2.29	2.86	3.53	4.30	5.17	6.13	-	-
50	-	1.64	2.05	2.53	3.10	3.75	4.48	-	-
60	-	-	1.43	1.77	2.18	2.65	3.19	ı	-
70	-	-	-	1.20	1.49	1.82	2.21	-	-
73	-	-	_	1.06	1.31	1.62	1.97	_	-

Nominal performance at to = -10 °C, tc = 45 °C	
--	--

Cooling capacity	1 975	W
Power input	1 016	W
Current consumption	2.59	Α
Mass flow	52	kg/h
C.O.P.	1.94	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Pressure switch settings

23.6	bar(g)
0.45	bar(g)
0.85	bar(g)

Sound power data

Sound power level	67	dB(A)
With accoustic hood	59	dB(A)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R134a

Cond. temp. in	p. in Evaporating temperature in °C (to)								
°C (tc)	-15	-10	-5	0	5	10	15		
		•							
Cooling capacity			,		,	1			
22	2 052	2 584	3 211	3 941	4 786	-	-	-	-
30	-	2 397	2 986	3 674	4 471	5 387	-	-	-
40	-	-	2 697	3 325	4 055	4 897	5 862	-	-
50	-	-	2 398	2 958	3 614	4 374	5 247	-	-
60	-	-	-	2 572	3 146	3 816	-	-	-
70	-	-	-	-	2 650	3 223	-	-	-
73	-	-	-	-	2 496	3 038	-	-	-
Power input in W									
22	618	625	631	639	648	-	-	-	-
30	-	742	748	754	762	773	-	-	-
40	-	-	924	930	938	948	962	-	-
50	-	-	1 137	1 147	1 157	1 167	1 181	-	-
60	-	-	-	1 411	1 425	1 439	-	-	-
70	-	-	-	-	1 749	1 769	-	-	-
73	-	-	-	-	1 858	1 880	-	-	-
Current consump						1			
22	2.00	2.02	2.03	2.04	2.05	-	-	-	-
30	-	2.22	2.23	2.24	2.25	2.26	-	-	-
40	-	-	2.45	2.46	2.47	2.48	2.50	-	-
50	-	-	2.80	2.81	2.82	2.83	2.84	-	-
60	-	-	-	3.44	3.44	3.45	-	-	-
70	-	-	-	-	4.51	4.52	-	-	-
73	-	-	-	-	4.94	4.94	-	-	-
A Slave to to "	_								
Mass flow in kg/h		10	T 00	70	00	1			
22	39	49	62	76	93	-	-	-	-
30	-	49	61	76	93	113	-	-	-
40	-	-	60	75	92	112	136	-	-
50	-	-	59	74	91	111	135	-	-
60	-	-	-	72	89	109	-	-	-
70	-	-	-	-	87	107	-	-	-
73	-	-	-	-	86	106	-	-	-
Coefficient of per	rformance (C C) P)							
-	3.32		5.00	6 17	7 20	_	_	_	I -
22	3.32	4.13	5.09	6.17	7.38	1	-	-	-
30		3.23	3.99	4.87	5.86	6.97		-	-
40 50			2.92	3.57	4.32	5.17	6.10		
50	-	-	2.11	2.58	3.12	3.75	4.44	-	-
60	-	-	-	1.82	2.21	2.65	-	-	-
70	-	-	-	-	1.52	1.82	-	-	-
73	-	-	-	-	1.34	1.62	-	-	-

Nominal performance at to = -10 °C, tc = 45 °C

Cooling capacity	-	W
Power input	-	W
Current consumption	-	Α
Mass flow	-	kg/h
C.O.P.	-	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}$ C , Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	23.6	bar(g)
Minimum LP switch setting	0.45	bar(g)
LP pump down setting	0.85	bar(g)

Sound power data

Sound power level	67	dB(A)
With accoustic hood	59	dB(A)

Tolerance according EN12900

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Superheat = 10 K

R134a

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-15	-10	-5	0	5	10	15		
Cooling canacity	ı in W								
Cooling capacity 22	2 496	3 149	3 926	4 828	5 859	-	_	_	_
30	2 277	2 904	3 650	4 517	5 506	6 621	-	-	_
40	2 003	2 591	3 290	4 104	5 035	6 085	7 256	-	_
50	-	2 258	2 903	3 656	4 520	5 496	6 586		_
60	-	-	2 477	3 161	3 949	4 843	5 845	-	_
70	-	_	-	2 608	3 312	4 115	5 021	-	_
73		_	_	2 428	3 106	3 881	4 755	_	_
Power input in V	,			:=-		,	,		I
22	739	753	768	787	810	_	-	_	_
30	872	887	903	920	940	964	_		_
40	1 058	1 080	1 100	1 118	1 138	1 159	1 184		_
50	-	1 303	1 332	1 357	1 380	1 403	1 428	-	_
60	-	-	1 604	1 640	1 672	1 701	1 729	-	_
70	-	_	-	1 972	2 017	2 057	2 094	-	-
73	-	_	_	2 082	2 132	2 176	2 216	-	_
Current consum		1	1		1	1	1		T
22	1.99	2.00	2.01	2.01	2.02	-	-	-	-
30	2.19	2.21	2.22	2.23	2.24	2.26	-	-	-
40	2.42	2.44	2.46	2.47	2.49	2.51	2.54	-	-
50	-	2.77	2.80	2.82	2.84	2.87	2.90	-	-
60	-	-	3.38	3.41	3.44	3.48	3.51	-	-
70	-	-	-	4.40	4.44	4.48	4.53	-	-
73	-	-	-	4.79	4.84	4.88	4.93	-	-
lass flow in kg/	h								
22	54	67	81	98	117	-	-	-	-
30	53	66	81	98	117	138	-	-	-
40	51	65	80	98	118	139	163	-	-
50	-	63	79	97	117	140	164	-	-
60	-	-	77	95	116	139	164	-	-
70	-	-	-	91	113	136	162	-	-
73	-	-	-	90	111	135	161	-	-
coefficient of pe	rformance (C.C).P.)							
22	3.38	4.18	5.11	6.14	7.23	-	-	-	-
30	2.61	3.27	4.04	4.91	5.86	6.87	-	-	-
40	1.89	2.40	2.99	3.67	4.43	5.25	6.13	-	-
50	-	1.73	2.18	2.69	3.27	3.92	4.61	-	-
60	-	-	1.54	1.93	2.36	2.85	3.38	-	-
70	-	-	-	1.32	1.64	2.00	2.40	-	-
73	-	-	-	1.17	1.46	1.78	2.15	-	_

Nominal performance at to = -10 °C, tc = 45 °C	С
--	---

Cooling capacity	2 427	W
Power input	1 188	W
Current consumption	2.59	Α
Mass flow	64	kg/h
C.O.P.	2.04	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	23.6	bar(g)	
Minimum LP switch setting	0.45	bar(g)	
LP pump down setting	0.85	bar(q)	

Sound power data

Sound power level	71	dB(A)
With accoustic hood	63	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R134a

Cond. temp. in Evaporating temperature in °C (to)									
°C (tc)	-15	-10	-5	0	5	10	15		
cooling capacity	in W								
22	2 536	3 186	3 956	4 849	5 869	-	_	-	-
30	-	2 958	3 697	4 551	5 525	6 621	_	-	-
40	-	-	3 358	4 157	5 065	6 085	7 222	-	_
50	1-	_	2 991	3 727	4 561	5 496	6 534	-	-
60	_	_	_	3 249	4 002	4 843	-	_	_
70	1-	_	_	-	3 376	4 115	_	-	-
73	_	_	_	-	3 173	3 881	-	-	-
•									
Power input in W						T			1
22	739	753	768	787	810	-	-	-	-
30	-	887	903	920	940	964	-	-	-
40	-	-	1 100	1 118	1 138	1 159	1 184	-	-
50	-	-	1 332	1 357	1 380	1 403	1 428	-	-
60	-	-	-	1 640	1 672	1 701	-	-	-
70	-	-	-	-	2 017	2 057	-	-	-
73	-	-	-	-	2 132	2 176	-	-	-
current consum	ption in A								
22	1.99	2.00	2.01	2.01	2.02	-	-	-	-
30	-	2.21	2.22	2.23	2.24	2.26	-	-	-
40	-	-	2.46	2.47	2.49	2.51	2.54	-	-
50	-	-	2.80	2.82	2.84	2.87	2.90	-	-
60	-	-	-	3.41	3.44	3.48	-	-	-
70	-	-	-	-	4.44	4.48	-	-	-
73	-	-	-	-	4.84	4.88	-	-	-
		•	•	•	•	•			•
lass flow in kg/l							1		
22	48	61	76	94	114	-	-	-	-
30	-	60	76	94	115	138	-	-	-
40	-	-	75	94	115	139	167	-	-
50	-	-	74	93	115	140	168	-	-
60	-	-	-	91	113	139	-	-	-
70	-	-	-	-	110	136	-	-	-
73	-	-	-	-	109	135	-	-	-
coefficient of pe	rformance (C.C).P.)							
22	3.43	4.23	5.15	6.16	7.25	-	-	-	-
30	-	3.33	4.09	4.95	5.88	6.87	-	-	-
40	-	-	3.05	3.72	4.45	5.25	6.10	-	-
50	-	-	2.25	2.75	3.30	3.92	4.58	-	-
60	-	-	-	1.98	2.39	2.85	-	-	-
70	-	-	-	-	1.67	2.00	-	-	-
			_	_	1.49	1.78	_	_	_

Nominal performance at to = -10 °C, tc = 45 °C

Cooling capacity	-	W
Power input	-	W
Current consumption	-	Α
Mass flow	-	kg/h
C.O.P.	-	-

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}$ C , Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	23.6	bar(g)	۱
Minimum LP switch setting	0.45	bar(g)	ı
LP pump down setting	0.85	bar(g)	

Sound power data

Sound power level	71	dB(A)
With accoustic hood	63	dB(A)

Tolerance according EN12900

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R404A

Cond. temp. in									
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
Cooling capacity	y in W	1	•	1	•	•	•	1	1
10	2 340	2 903	3 593	4 425	5 415	-	-	-	-
20	2 090	2 625	3 258	4 006	4 885	5 911	7 100	-	-
30	1 767	2 278	2 860	3 529	4 301	5 194	6 222	7 402	8 749
40	-	1 851	2 387	2 982	3 654	4 417	5 289	6 286	7 424
50	-	-	1 829	2 356	2 931	3 571	4 292	5 111	6 044
60	-	-	-	-	2 122	2 643	3 219	3 865	4 599
Power input in V	v								
10	783	782	765	736	696	-	-	-	-
20	977	983	976	958	933	904	876	-	-
30	1 248	1 250	1 240	1 222	1 199	1 176	1 155	1 141	1 136
40	-	1 625	1 601	1 572	1 540	1 510	1 485	1 469	1 465
50	-	-	2 103	2 050	1 997	1 949	1 908	1 879	1 864
60	-	-	-	-	2 615	2 537	2 468	2 414	2 377
Current consum	ption in A								
10	1.61	1.61	1.58	1.52	1.44	-	-	-	-
20	2.01	2.03	2.01	1.97	1.92	1.86	1.81	-	-
30	2.57	2.58	2.56	2.52	2.47	2.42	2.38	2.35	2.34
40	-	3.35	3.30	3.24	3.18	3.11	3.06	3.03	3.02
50	-	-	4.34	4.23	4.12	4.02	3.94	3.87	3.84
60	-	-	-	-	5.39	5.23	5.09	4.98	4.90
Mass flow in kg/	'h								
10	45	58	74	91	113	-	-	-	-
20	44	57	72	90	110	135	163	-	-
30	42	55	70	87	107	131	159	191	229
40	-	51	66	83	102	126	153	184	221
50	-	-	58	75	95	117	144	175	211
60	-	-	-	-	83	105	131	161	197
Coefficient of pe	erformance (C.C).P.)							
10	2.99	3.71	4.69	6.01	7.78	-	-	-	-
20	2.14	2.67	3.34	4.18	5.24	6.54	8.11	-	-
30	1.42	1.82	2.31	2.89	3.59	4.42	5.39	6.49	7.70
40	-	1.14	1.49	1.90	2.37	2.93	3.56	4.28	5.07
50	-	-	0.87	1.15	1.47	1.83	2.25	2.72	3.24
60	_	_	-	-	0.81	1.04	1.30	1.60	1.93

Nonlinai periormance at to	10	C, IC - 40	C
0 11 11			- 00

Cooling capacity	3 302	W
Power input	1 751	W
Current consumption	3.61	Α
Mass flow	99	kg/h
C.O.P.	1.89	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}\text{C}$, Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	67	dB(A)
With accoustic hood	59	dB(A)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Superheat = 10 K

R404A

Cond. temp. in			Evaporating temperature in °C (to)							
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10	
Cooling capacity	in W	•		•						
10	2 248	2 810	3 501	4 339	5 342	-	-	-	-	
20	1 966	2 493	3 124	3 876	4 767	5 814	7 032	-	-	
30	1 616	2 111	2 686	3 356	4 140	5 055	6 119	7 346	8 749	
40	1 197	1 661	2 180	2 771	3 451	4 239	5 152	6 209	7 424	
50	-	-	1 605	2 117	2 695	3 358	4 124	5 013	6 044	
60	-	-	-	-	1 867	2 405	3 024	3 748	4 599	
Power input in W	ı									
10	783	782	765	736	696	_	-	_	-	
20	977	983	976	958	933	904	876	-	-	
30	1 248	1 250	1 240	1 222	1 199	1 176	1 155	1 141	1 136	
40	1 640	1 625	1 601	1 572	1 540	1 510	1 485	1 469	1 465	
50	-	-	2 103	2 050	1 997	1 949	1 908	1 879	1 864	
60	-	-	-	-	2 615	2 537	2 468	2 414	2 377	
		•		•	1	1		•		
Current consum	ption in A									
10	1.61	1.61	1.58	1.52	1.44	-	-	-	-	
20	2.01	2.03	2.01	1.97	1.92	1.86	1.81	-	-	
30	2.57	2.58	2.56	2.52	2.47	2.42	2.38	2.35	2.34	
40	3.38	3.35	3.30	3.24	3.18	3.11	3.06	3.03	3.02	
50	-	-	4.34	4.23	4.12	4.02	3.94	3.87	3.84	
60	-	-	-	-	5.39	5.23	5.09	4.98	4.90	
Mass flow in kg/l			1		T	Т	1	T		
10	53	68	84	103	124	-	-	-	-	
20	52	67	83	101	122	145	172	-	-	
30	50	64	80	98	119	142	168	197	229	
40	44	59	76	93	113	136	161	190	221	
50	-	-	67	85	105	127	152	180	211	
60	-	-	-	-	92	114	139	166	197	
Coefficient of pe	rformance (C.0	D.P.)								
10	2.87	3.59	4.57	5.90	7.67	-	-	-	-	
20	2.01	2.54	3.20	4.05	5.11	6.43	8.03	-	-	
30	1.29	1.69	2.17	2.75	3.45	4.30	5.30	6.44	7.70	
40	0.73	1.02	1.36	1.76	2.24	2.81	3.47	4.23	5.07	
50	-	-	0.76	1.03	1.35	1.72	2.16	2.67	3.24	
60	-	-	-	-	0.71	0.95	1.23	1.55	1.93	
		1	ш	1	1	1				
Nominal perform	nance at to = -1	0 °C, tc = 45 °C				Pressure switch	settings			
					Г					

Cooling capacity

Current consumption

Power input

Mass flow

C.O.P.

to: Evaporating temperature at dew point tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

3 082

1 751

3.61

109

1.76

W

W

kg/h

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	67	dB(A)
With accoustic hood	59	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R404A

Cond. temp. in	Evaporating temperature in °C (to)								
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
Cooling capacity	in W				_				
10	2 856	3 532	4 349	5 325	6 478	-	-	-	-
20	2 514	3 159	3 917	4 805	5 843	7 049	8 441	-	-
30	2 134	2 750	3 450	4 253	5 177	6 241	7 464	8 863	10 458
40	-	2 283	2 926	3 644	4 456	5 380	6 434	7 638	9 010
50	-	-	2 324	2 959	3 659	4 444	5 331	6 341	7 491
60	-	-	-	-	2 764	3 411	4 133	4 950	5 881
Power input in V	,								
10	967	947	930	916	902	_	_	-	_
20	1 209	1 195	1 184	1 172	1 160	1 145	1 126	-	-
30	1 502	1 497	1 492	1 486	1 477	1 464	1 445	1 418	1 382
40	-	1 868	1 872	1 872	1 868	1 859	1 841	1 814	1 777
50	-	-	2 339	2 348	2 351	2 346	2 331	2 306	2 268
60	-	-	-	-	2 940	2 942	2 932	2 910	2 874
		· · · · · · · · · · · · · · · · · · ·	l .			II.		I -	_
Current consum	ption in A			•					
10	1.52	1.49	1.46	1.44	1.41	-	-	-	-
20	1.90	1.87	1.86	1.84	1.82	1.80	1.77	-	-
30	2.36	2.35	2.34	2.33	2.32	2.30	2.27	2.22	2.17
40	-	2.93	2.94	2.94	2.93	2.92	2.89	2.85	2.79
50	-	-	3.67	3.68	3.69	3.68	3.66	3.62	3.56
60	-	-	-	-	4.61	4.62	4.60	4.57	4.51
Mass flow in kg/	h								
10	52	70	88	110	135	_	_	_	_
20	51	69	87	108	132	161	195	-	_
30	49	67	85	105	129	157	190	230	277
40	-	62	81	102	125	152	185	224	270
50	-	-	74	95	119	146	178	217	262
60	-	_	-	_	109	137	169	207	252
		1	1	1				-	1
Coefficient of pe	rformance (C.0	D.P.)							
10	2.95	3.73	4.68	5.82	7.18	-	-	-	-
20	2.08	2.64	3.31	4.10	5.04	6.16	7.50	-	-
30	1.42	1.84	2.31	2.86	3.50	4.26	5.17	6.25	7.57
40	-	1.22	1.56	1.95	2.38	2.89	3.50	4.21	5.07
50	-	-	0.99	1.26	1.56	1.89	2.29	2.75	3.30
60	-	-	-	-	0.94	1.16	1.41	1.70	2.05

Nominal	performance	at to =	-10 °C.	tc = 45 °C

14/
W
W
Α
kg/h

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}\text{C}$, Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	71	dB(A)
With accoustic hood	63	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Superheat = 10 K

R404A

Cond. temp. in	temp. in Evaporating temperature in °C (to)								
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
Cooling capacity	/ in W	•		•			_		
10	2 744	3 419	4 238	5 222	6 391	-	-	-	-
20	2 364	3 000	3 755	4 649	5 702	6 934	8 361	-	-
30	1 952	2 549	3 240	4 044	4 982	6 074	7 340	8 797	10 458
40	1 493	2 048	2 672	3 386	4 209	5 163	6 268	7 544	9 010
50	-	-	2 038	2 659	3 365	4 179	5 123	6 219	7 491
60	-	-	-	-	2 432	3 103	3 884	4 800	5 881
Power input in V	v								
10	967	947	930	916	902	_	-	-	_
20	1 209	1 195	1 184	1 172	1 160	1 145	1 126	-	-
30	1 502	1 497	1 492	1 486	1 477	1 464	1 445	1 418	1 382
40	1 863	1 868	1 872	1 872	1 868	1 859	1 841	1 814	1 777
50	-	-	2 339	2 348	2 351	2 346	2 331	2 306	2 268
60	-	-	-	-	2 940	2 942	2 932	2 910	2 874
•			· L	•	1	1		•	
Current consum	ption in A								
10	1.52	1.49	1.46	1.44	1.41	-	-	-	-
20	1.90	1.87	1.86	1.84	1.82	1.80	1.77	-	-
30	2.36	2.35	2.34	2.33	2.32	2.30	2.27	2.22	2.17
40	2.92	2.93	2.94	2.94	2.93	2.92	2.89	2.85	2.79
50	-	-	3.67	3.68	3.69	3.68	3.66	3.62	3.56
60	-	-	-	-	4.61	4.62	4.60	4.57	4.51
Mass flow in kg/	h	1	1	_	•	•	.	•	
10	62	81	101	123	149	-	-	-	-
20	61	80	100	121	146	174	206	-	-
30	58	78	98	119	142	170	201	237	277
40	52	73	93	114	138	165	195	230	270
50	-	-	85	107	131	158	188	223	262
60	-	-	-	-	121	148	179	213	252
Coefficient of pe	rformance (C.() P)							
10	2.84	3.61	4.56	5.70	7.09	_	-	_	_
20	1.96	2.51	3.17	3.97	4.91	6.05	7.43	_	_
30	1.30	1.70	2.17	2.72	3.37	4.15	5.08	6.20	7.57
40	0.80	1.10	1.43	1.81	2.25	2.78	3.40	4.16	5.07
50	-	-	0.87	1.13	1.43	1.78	2.20	2.70	3.30
60	<u> </u>	-	-	-	0.83	1.05	1.32	1.65	2.05
- 55		1	I		0.00	1.00	1.02	1.00	2.00
Nominal perform	nance at to = -1	0 °C, tc = 45 °C				Pressure switch	settings		
				_	Г				

to: Evaporating	tamparatura	at	dow	noin

Cooling capacity

Current consumption

Power input

Mass flow

C.O.P.

tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

3 797

2 097

3.29

135

1.81

W

W

kg/h

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	71	dB(A)
With accoustic hood	63	dB(A)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions

R407A

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-25	-20	-15	-10	-5	0	5	10	
Cooling capacity			1	T	Т	1		1	
10	2 447	3 061	3 801	4 684	-	-	-	-	-
20	2 185	2 766	3 467	4 303	5 290	6 445	-	-	-
30	1 889	2 424	3 071	3 847	4 766	5 845	7 101	8 547	-
40	1 572	2 047	2 627	3 328	4 165	5 156	6 315	7 658	-
45	-	1 850	2 391	3 050	3 841	4 781	5 887	7 173	-
50	-	-	2 149	2 761	3 502	4 390	5 438	6 664	-
55	-	-	-	2 463	3 152	3 982	4 970	6 132	-
60	-	-	-	-	2 791	3 561	4 485	5 579	-
Power input in V	v								
10	740	749	750	740	_	-	-	_	
20	890	907	919	924	919	900	_	_	_
30	1 079	1 100	1 120	1 136	1 145	1 144	1 131	1 102	_
40	1 335	1 355	1 377	1 400	1 419	1 433	1 437	1 429	
45	-	1 513	1 536	1 560	1 583	1 602	1 613	1 614	_
50	_	-	1 718	1 743	1 769	1 792	1 809	1 818	_
55	_	-	-	1 953	1 980	2 006	2 028	2 044	_
60	_	_	-	-	2 219	2 247	2 273	2 295	_
00		I.	1	I	2210		2270	2 200	
Current consum	ption in A								
10	1.71	1.75	1.78	1.80	_	_	_	_	_
20	2.24	2.29	2.32	2.34	2.35	2.36	_	_	-
30	2.55	2.60	2.63	2.65	2.66	2.67	2.68	2.69	-
40	2.82	2.87	2.90	2.92	2.93	2.94	2.95	2.96	_
45	-	3.05	3.08	3.10	3.11	3.12	3.13	3.14	_
50	_	-	3.32	3.34	3.35	3.36	3.36	3.38	
55	_	_	-	3.66	3.67	3.68	3.68	3.69	_
60	-	-	_	-	4.10	4.11	4.11	4.12	_
00		L		I	1.10	1		1.12	
lass flow in kg/	h								
10	48	59	72	87	-	-	_	_	_
20	46	58	71	87	105	126	_	-	-
30	44	56	69	85	103	125	149	178	_
40	41	52	66	81	100	122	147	175	-
45	-	50	63	79	98	119	145	173	-
50	_	-	61	76	95	117	142	171	-
55	-	-	-	73	92	113	138	167	-
60	-	-	-	-	88	109	135	163	-
			1						
Coefficient of pe	erformance (C.C	D.P.)							
10	3.31	4.09	5.07	6.33	-	-	-	-	-
20	2.46	3.05	3.77	4.66	5.76	7.16	-	-	-
30	1.75	2.20	2.74	3.39	4.16	5.11	6.28	7.75	-
40	1.18	1.51	1.91	2.38	2.93	3.60	4.39	5.36	-
45	-	1.22	1.56	1.95	2.43	2.98	3.65	4.44	-
50	-	-	1.25	1.58	1.98	2.45	3.01	3.67	-
55	-	-	-	1.26	1.59	1.99	2.45	3.00	-
60	_	_	-	-	1.26	1.58	1.97	2.43	_

Nominal performance at to = -10 °C, tc = 45 °C

	,		
Cooling capacity	3 050	W	
Power input	1 560	W	
Current consumption	3.10	Α	
Mass flow	79	kg/h	
C.O.P.	1.95		

to: Evaporating temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	67	dB(A)
With accoustic hood	59	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 50 Hz, ARI rating conditions

R407A

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-25	-20	-15	-10	-5	0	5	10	
	. : 14/								
ooling capacity	2 599	3 247	4 029	4 960			1		
10			ł	1			-	-	-
20	2 337	2 956	3 701	4 588	5 636	6 859	7.040	- 0.454	-
30	2 040	2 614	3 307	4 137	5 120	6 272	7 610	9 151	-
40	1 719	2 234	2 863	3 620	4 524	5 592	6 839	8 283	-
45	-	2 035	2 625	3 341	4 201	5 221	6 418	7 808	-
50	-	-	2 380	3 051	3 863	4 832	5 976	7 310	-
55	-	-	-	2 752	3 513	4 428	5 515	6 791	-
60	-	-	-	-	-	4 011	5 040	6 255	-
ower input in V	V								
10	740	749	750	740	-	-	-	-	-
20	890	907	919	924	919	900	-	-	-
30	1 079	1 100	1 120	1 136	1 145	1 144	1 131	1 102	-
40	1 335	1 355	1 377	1 400	1 419	1 433	1 437	1 429	-
45	-	1 513	1 536	1 560	1 583	1 602	1 613	1 614	-
50	-	-	1 718	1 743	1 769	1 792	1 809	1 818	-
55	_	_	-	1 953	1 980	2 006	2 028	2 044	-
60	-	_	_	-	-	2 247	2 273	2 295	-
		I							
urrent consum	ption in A								
10	1.71	1.75	1.78	1.80	-	-	-	-	-
20	2.24	2.29	2.32	2.34	2.35	2.36	-	-	-
30	2.55	2.60	2.63	2.65	2.66	2.67	2.68	2.69	-
40	2.82	2.87	2.90	2.92	2.93	2.94	2.95	2.96	-
45	_	3.05	3.08	3.10	3.11	3.12	3.13	3.14	-
50	-	-	3.32	3.34	3.35	3.36	3.36	3.38	-
55	-	_	_	3.66	3.67	3.68	3.68	3.69	_
60	-	-	-	_	-	4.11	4.11	4.12	-
		I						l l	
lass flow in kg/	h								
10	47	59	72	87	-	-	_	-	-
20	46	57	71	86	105	125	-	-	-
30	44	55	69	84	103	124	149	176	-
40	41	52	65	81	100	121	146	174	_
45	_	50	63	79	97	119	144	172	_
50	-	-	60	76	94	116	141	170	_
55	_	-	-	73	91	113	138	166	_
60	_	_	_	-	-	109	134	162	_
v		1	1	1	1	1 .00		.52	
oefficient of pe	•	· ·	I	1 0	1		1	 	
10	3.51	4.34	5.37	6.71	-	-	-	-	-
20	2.63	3.26	4.03	4.96	6.13	7.62	-	-	-
30	1.89	2.38	2.95	3.64	4.47	5.48	6.73	8.30	-
40	1.29	1.65	2.08	2.59	3.19	3.90	4.76	5.80	-
45	-	1.35	1.71	2.14	2.65	3.26	3.98	4.84	-
50	-	-	1.38	1.75	2.18	2.70	3.30	4.02	-
55	-	-	-	1.41	1.77	2.21	2.72	3.32	-
60	-	-	-	-	-	1.79	2.22	2.73	-
						_			
lominal perform	nance at to = -1	0 °C, tc = 45 °C	10/		F	Pressure switch		20.7	h = =(=)

Cooling capacity

Current consumption

Power input

Mass flow

C.O.P.

to: Evaporating temperature at dew point tc: Condensing temperature at dew point

Rating conditions : Superheat = 11.1 K , Subcooling = 8.3 K

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	67	dB(A)
With accoustic hood	59	dB(A)

Tolerance according EN12900

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

W

W

kg/h

3 341

1 560

3.10

2.14

79

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions

R407A

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-25	-20	-15	-10	-5	0	5	10	
Cooling capacity	ı in W								
Cooling capacity	2 837	3 629	4 581	5 711	_	_	_	-	
20	2 495	3 240	4 128	5 179	6 411	7 843	-	-	
								†	
30	2 132	2 824	3 643	4 608	5 738	7 053	8 571	10 311	-
40	1 751	2 383	3 127	4 001	5 024	6 215	7 593	9 177	-
45	-	2 155	2 859	3 685	4 652	5 779	7 085	8 589	-
50	-	-	2 584	3 360	4 270	5 331	6 564	7 986	-
55	-	-	-	3 028	3 879	4 873	6 031	7 370	-
60	-	-	-	-	3 478	4 405	5 486	6 741	-
Power input in W	ı								
10	858	861	867	881	-	-	-		-
20	1 056	1 064	1 067	1 070	1 080	1 100	-	-	-
30	1 285	1 310	1 323	1 328	1 331	1 337	1 351	1 379	-
40	1 550	1 605	1 640	1 659	1 668	1 672	1 677	1 687	-
45	-	1 771	1 822	1 853	1 870	1 878	1 882	1 888	-
50	-	-	2 020	2 066	2 094	2 109	2 116	2 121	-
55	-	-	-	2 299	2 341	2 366	2 380	2 387	-
60	-	-	-	-	2 612	2 651	2 674	2 686	-
			1						
Current consum	ption in A								
10	1.68	1.71	1.73	1.74	-	-	-	-	-
20	2.21	2.25	2.27	2.28	2.29	2.30	-	-	-
30	2.51	2.56	2.59	2.61	2.62	2.63	2.64	2.66	-
40	2.75	2.81	2.85	2.88	2.90	2.92	2.93	2.96	-
45	-	2.97	3.02	3.05	3.07	3.09	3.12	3.14	-
50	-	_	3.23	3.27	3.30	3.33	3.35	3.38	-
55	-	-	_	3.56	3.60	3.63	3.66	3.69	-
60	-	_	-	-	3.99	4.03	4.06	4.10	-
<u> </u>			· L		l .	· L			
Mass flow in kg/l	h								
10	55	70	87	107	-	-	-	-	-
20	53	68	85	105	127	154	-	-	-
30	50	65	82	102	125	151	180	214	-
40	46	61	78	98	121	147	176	210	-
45	-	58	76	96	118	144	174	207	-
50	-	-	73	93	116	142	171	204	-
55	-	-	-	90	113	139	168	201	-
60	-	-	-	-	109	135	165	198	-
Coofficient of	ufoumor (C.C	, D)							
Coefficient of pe	3.31	4.22	5.29	6.48	-	_	1 -	_ [
20	2.36		1	4.84	5.94		-	-	
		3.05	3.87			7.13	ł	 	-
30	1.66	2.15	2.75	3.47	4.31	5.27	6.34	7.48	-
40	1.13	1.49	1.91	2.41	3.01	3.72	4.53	5.44	-
45	-	1.22	1.57	1.99	2.49	3.08	3.76	4.55	-
50	-	-	1.28	1.63	2.04	2.53	3.10	3.76	-
55	-	-	-	1.32	1.66	2.06	2.53	3.09	-
60	-	-	-	-	1.33	1.66	2.05	2.51	-

Nominal performance at to = -10 °C, tc = 45 °C

	,		
Cooling capacity	3 685	W	
Power input	1 853	W	
Current consumption	3.05	Α	
Mass flow	96	kg/h	
C.O.P.	1.99		

to: Evaporating temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	71	dB(A)
With accoustic hood	63	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 60 Hz, ARI rating conditions

R407A

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-25	-20	-15	-10	-5	0	5	10	
Cooling consoits	in M								
10	3 013	3 851	4 856	6 048	_	_	_	I _ I	
20	2 669	3 462	4 407	5 522	6 829	8 346		-	
30	2 303	3 045	3 923	4 956		7 568		11 038	
40	1 915	2 602	3 407	4 352	6 164 5 457	6 740	9 186 8 223	9 926	
	1915			+				+	
45	-	2 370	3 138	4 037	5 088	6 310	7 724	9 349	
50	-		2 862	3 714	4 709	5 869	7 213	8 761	-
55	-	-	-	3 383	4 323	5 419	6 692	8 162	-
60	-	-	-	-	-	4 962	6 165	7 557	-
Power input in W	ı	_	_		1				
10	858	861	867	881	-	-	-	-	-
20	1 056	1 064	1 067	1 070	1 080	1 100	-	-	-
30	1 285	1 310	1 323	1 328	1 331	1 337	1 351	1 379	-
40	1 550	1 605	1 640	1 659	1 668	1 672	1 677	1 687	-
45	-	1 771	1 822	1 853	1 870	1 878	1 882	1 888	-
50	-	-	2 020	2 066	2 094	2 109	2 116	2 121	-
55	-	-	-	2 299	2 341	2 366	2 380	2 387	-
60	-	-	-	-	-	2 651	2 674	2 686	-
Current consum			1.70	1	1	1	1	1	
10	1.68	1.71	1.73	1.74	-	-	-	-	-
20	2.21	2.25	2.27	2.28	2.29	2.30	-	-	-
30	2.51	2.56	2.59	2.61	2.62	2.63	2.64	2.66	-
40	2.75	2.81	2.85	2.88	2.90	2.92	2.93	2.96	-
45	-	2.97	3.02	3.05	3.07	3.09	3.12	3.14	-
50	-	-	3.23	3.27	3.30	3.33	3.35	3.38	-
55	-	-	-	3.56	3.60	3.63	3.66	3.69	-
60	-	-	-	-	-	4.03	4.06	4.10	-
Mass flow in kg/l	n								
10	55	70	86	106	_	-	_	_	_
20	53	67	84	104	127	153	_	_	-
30	50	64	81	101	124	150	179	213	_
40	45	60	78	97	120	146	175	209	_
45	-	58	75	95	118	144	173	206	_
50	-	-	73	92	115	141	170	203	_
55	-	_	-	89	112	138	167	200	_
60	-	-	-	-	-	135	164	197	-
<u> </u>		•	•		•	•	•	•	
Coefficient of pe	,	, <i>'</i>	F 00	0.00	1		1	<u> </u>	
10	3.51	4.47	5.60	6.86	-	- 7.50	-	-	-
20	2.53	3.26	4.13	5.16	6.33	7.59	-	-	-
30	1.79	2.32	2.97	3.73	4.63	5.66	6.80	8.00	-
40	1.24	1.62	2.08	2.62	3.27	4.03	4.90	5.88	-
45	-	1.34	1.72	2.18	2.72	3.36	4.10	4.95	-
50	-	-	1.42	1.80	2.25	2.78	3.41	4.13	-
55	-	-	-	1.47	1.85	2.29	2.81	3.42	-
60	-	-	-	-	-	1.87	2.31	2.81	-

Nominal performance at to = -10 °C, tc = 45 °C

•		 		
	Cooling capacity	4 037	W	
F	Power input	1 853	W	
(Current consumption	3.05	Α	
N	Mass flow	95	kg/h	
(C.O.P.	2.18		

to: Evaporating temperature at dew point

Rating conditions : Superheat = 11.1 K , Subcooling = 8.3 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	71	dB(A)
With accoustic hood	63	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Superheat = 10 K

R407C

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
Cooling capacity		4.004	2.444	2.007	2.072	4.450	F 222	0.227	7 440
30	-	1 921	2 414	2 997	3 673	4 450	5 333	6 327	7 440
35	-	1 781	2 263	2 830	3 486	4 238	5 091	6 052	7 126
40	-	1 645	2 112	2 658	3 289	4 012	4 831	5 754	6 785
45	-	-	1 968	2 490	3 092	3 781	4 562	5 442	6 425
50	-	-	-	2 335	2 903	3 554	4 292	5 124	6 056
55	-	-	-	-	2 731	3 339	4 031	4 811	5 686
60	-	-	-	-	-	3 145	3 785	4 508	5 322
65	-	-	-	-	-	-	3 561	4 223	4 971
Power input in W									
30	-	1 000	1 029	1 058	1 086	1 115	1 147	1 181	1 218
35	-	1 109	1 146	1 178	1 208	1 236	1 262	1 289	1 316
40	-	1 217	1 264	1 304	1 337	1 366	1 391	1 412	1 432
45	-	-	1 383	1 433	1 473	1 506	1 532	1 552	1 566
50	-	-	-	1 565	1 616	1 656	1 685	1 706	1 718
55	-	-	-	-	1 764	1 814	1 850	1 875	1 888
60	-	-	-	-	-	1 980	2 026	2 058	2 075
65	-	-	-	-	-	-	2 214	2 255	2 279
Current consump	tion in A	T	T	T	T		1		1
30	-	1.80	1.86	1.91	1.96	2.01	2.07	2.13	2.20
35	-	2.00	2.07	2.13	2.18	2.23	2.28	2.32	2.37
40	-	2.20	2.28	2.35	2.41	2.46	2.51	2.55	2.58
45	-	-	2.50	2.58	2.66	2.72	2.76	2.80	2.83
50	-	-	-	2.82	2.92	2.99	3.04	3.08	3.10
55	-	-	-	-	3.18	3.27	3.34	3.38	3.41
60	-	-	-	-	-	3.57	3.66	3.71	3.74
65	-	-	-	-	-	-	3.99	4.07	4.11
Mass flow in kg/h									
30	-	37	47	59	73	89	108	129	153
35	-	36	46	58	72	88	107	129	153
40	-	34	45	57	71	88	107	128	152
45	-	-	43	55	70	86	106	127	151
50	-	-	-	53	68	85	104	126	150
55	-	-	-	-	66	83	103	124	149
60	-	-	-	-	-	81	100	123	147
65	-	-	-	-	-	-	98	120	145
Onefficient of		\ n \							
30	rormance (C.C	1.92	2.35	2.83	3.38	3.99	4.65	5.36	6.11
35	_	1.61	1.98	2.40	2.89	3.43	4.03	4.70	5.42
40		1.35	1.67	2.04	2.46	2.94	3.47	4.07	4.74
45	-	-	1.42	1.74	2.40	2.54	2.98	3.51	4.10
50	-	-	-	1.49	1.80	2.15	2.55	3.00	3.52
-				+		1.84			
55 60	<u>-</u>	-	-	-	1.55	1.59	2.18 1.87	2.57 2.19	3.01 2.56
UU	-	<u> </u>	-	- -	<u> </u>	1.09	1.01	2.19	2.56

Nominal performance at to = -10 °C, tc = 45 °C

Cooling capacity	3 092	W
Power input	1 473	W
Current consumption	2.66	Α
Mass flow	70	kg/h
C.O.P.	2.10	

to: Evaporating temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	30	bar(g)
Minimum LP switch setting	0.5	bar(g)
LP pump down setting	1	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 50 Hz,

R407C

Cond. temp. in				Evapora	ating temperature	e in °C (to)			
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
cooling capacity i	n W								
30	-	-	-	-	-	-	-	-	-
35	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-
50	-	-	-	-	-	-	-	-	-
55	-	-	-	-	-	-	-	-	-
60	-	-	-	-	-	-	-	-	-
65	-	-	-	-	-	-	-	-	-
I		1	1	- I	1		1	l .	1
Power input in W									
30	-	-	-	-	-	-	-	_	_
35	-	-	-	_	_	_	-	_	_
40	_	-	_	-	_	-	-	-	_
45		-	_	_	_	-	-	_	_
50	-	-	-	-	-	-	-	-	-
55		-	-	-	-	-	-		-
60	<u>-</u>	-	-	-	-	-	-	-	-
	-	-	-	-		-	-	-	-
65	-	-	-	-	-	-	-	-	-
Current consumpt			1		1			l	1
30	-	-	-	-	-	-	-	-	-
35	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-
50	-	-	-	-	-	-	-	-	-
55	-	-	-	-	-	-	-	-	-
60	-	-	-	-	-	-	-	-	-
65	-	-	-	-	-	-	-	-	-
Mass flow in kg/h									
30	-	-	-	-	-	-	-	-	-
35	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-
50	-	-	-	-	-	-	-	-	-
55	-	-	-	_	_	-	-	_	-
60	-	-	-	_	_	-	-	_	-
65	-	-	-	_	-	-	-	-	-
		1	ш	1	1	1	1	1	1
coefficient of perf	ormance (C.(O.P.)							
30	-	-	-	-	_	_	_	-	_
35	-	+	-	-			+	-	_
40		-			-	-	-		1
	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-
50	-	-	-	-	-	-	-	-	-
55	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-
60 65									

Cooling capacity	-	W
Power input	-	W
Current consumption	-	Α
Mass flow	-	kg/h
C.O.P.	-	

to: Evaporating temperature at dew point

Rating conditions : Suction gas temp. = °C , Subcooling = K

Maximum HP switch setting	30	bar(g)
Minimum LP switch setting	0.5	bar(g)
LP pump down setting	1	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Superheat = 10 K

R407C

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
Caaling canacity	in 14/								
30		2 305	2 897	3 596	4 408	5 340	6 399	7 593	8 928
35		2 137	2 716	3 396	4 183	5 085	6 109	7 262	8 552
					1			1	
40	-	1 974	2 534	3 189	3 947	4 814	5 798	6 905	8 142
45			2 362	2 988	3 710	4 537	5 474	6 530	7 710
50	-	-		2 802	3 484	4 265 4 007	5 151 4 837	6 149 5 773	7 267 6 823
55			-	-	3 278	1			-
60 65	-	-	-	-	-	3 774	4 541 4 273	5 410	6 386 5 965
00	-	-	-	-	-	-	4 2/3	5 068	5 905
Power input in W									
30	-	1 183	1 220	1 255	1 290	1 326	1 364	1 405	1 451
35	-	1 307	1 354	1 396	1 433	1 468	1 501	1 533	1 567
40	-	1 431	1 491	1 542	1 585	1 622	1 653	1 681	1 706
45	-	-	1 630	1 694	1 746	1 788	1 821	1 847	1 866
50	-	-	-	1 850	1 915	1 965	2 003	2 030	2 047
55	-	-	-	-	2 090	2 153	2 199	2 230	2 248
60	-	-	-	-	-	2 350	2 408	2 447	2 468
65	-	-	-	-	-	-	2 629	2 679	2 708
30	tion in A	1.86	1.91	1.97	2.02	2.08	2.14	2.20	2.28
	-	1	1	+	2.02		2.14		-
35	-	2.05	2.12	2.19	2.25	2.30	2.35	2.41	2.46
40		2.25	2.34	2.42	2.49	2.54	2.59	2.64	2.68
45		-	2.56	2.66	2.74	2.81	2.86	2.90	2.93
50	-	-	-	2.90	3.00	3.08	3.14	3.18	3.21
55	-	-	-	-	3.28	3.38	3.45	3.50	3.53
60	-	-	-	-	-	3.69	3.78	3.84	3.87
65	-	-	-	-	-	-	4.12	4.20	4.25
Mass flow in kg/h	l								
30	-	44	56	71	87	107	129	155	184
35	-	43	55	70	87	106	129	154	183
40	=	41	54	68	85	105	128	154	183
45	=	-	52	66	84	104	127	153	182
50	-	-	-	64	82	102	125	151	181
55	-	-	-	-	79	100	123	149	179
60	-	-	-	-	-	97	120	147	177
65	-	-	-	-	-	-	117	144	174
Coefficient of per		T .	2 27	2.06	2.42	4.02	4.60	5.40	6.15
30	-	1.95	2.37	2.86	3.42	4.03	4.69	5.40	6.15
35	-	1.63	2.01	2.43	2.92	3.46	4.07	4.74	5.46
40	-	1.38	1.70	2.07	2.49	2.97	3.51	4.11	4.77
45	-	-	1.45	1.76	2.12	2.54	3.01	3.54	4.13
50	-	-	-	1.51	1.82	2.17	2.57	3.03	3.55
55	-	-	-	-	1.57	1.86	2.20	2.59	3.04
60	-	-	-	-	-	1.61	1.89	2.21	2.59
65	-	-	-	-	-	-	1.63	1.89	2.20
lominal performa	anco at to = 4	0°C to = 45°C				Pressure switch	cottings		
Cooling consoits	unce at 10 = -1	0 0,10-45 0	10/	_	Г	Massimum LID assi		20	h = =/=)

Cooling capacity	3 710	W	
Power input	1 746	W	
Current consumption	2.74	Α	
Mass flow	84	kg/h	
C.O.P.	2.12		

to: Evaporating temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Maximum HP switch setting	30	bar(g)
Minimum LP switch setting	0.5	bar(g)
LP pump down setting	1	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 60 Hz,

R407C

Cond. temp. in Evaporating temperature in °C (to)								1	
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
ooling capacity i	n W		1	1	T	T	1		1
30	-	-	-	-	-	-	-	-	-
35	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-
50	-	-	-	-	-	-	-	-	-
55	-	-	-	-	-	-	-	-	-
60	-	-	-	-	-	-	-	i	-
65	-	-	-	-	-	-	-		-
ower input in W									
30	-	-	-	-	-	-	-	-	-
35	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-
50	-	-	-	-	-	_	-	-	-
55	-	_	_	-	_	_	_	-	_
60	-	_	_	-	_	_	_	-	_
65	-	-	-	-	_	_	_		_
		1		1	I	I	I		Į
urrent consump	ion in A								
30	-	-	-	_	_	_	-		_
35			_	-	_		-		_
40	-	-	-	-	_	_	-	-	-
-				+	+	_	+		_
45	-	-	-	-	-	-	-	-	-
50	-	-	-	-	-	-	-	-	-
55	-	-	-	-	-	-	-	-	-
60	-	-	-	-	-	-	-		-
65	-	-	-	-	-	-	-	-	-
lass flow in kg/h		T	1	1	Т	Г	1		1
30	-	-	-	-	-	-	-	-	-
35	-	-	-	-	-	-	-	-	-
40	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-
50	-	-	-	-	-	-	-	-	-
55	-	-	-	-	-	-	-	-	-
60	-	-	-	-	-	-	-	-	-
65	-	-	-	-	-	-	-	-	-
	<u> </u>								
oefficient of perf	ormance (C.C	D.P.)							
30	-	-	-	-	-	-	-	i	-
35	-	-	-	-	-	-	-		-
40	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	_	-	-	-
50	-	_	_	-	_	_	_	-	_
55		-	_	-	-	_	-	-	-
60	<u>-</u>	-	-	-	-	-	-	-	-
65	-	-	-	-	-	-	-	-	-

Nominal performance at to = °C, tc = °C

Cooling capacity	-	W	
Power input	-	W	
Current consumption	-	Α	
Mass flow	-	kg/h	
C.O.P.	-		

to: Evaporating temperature at dew point

Rating conditions : Suction gas temp. = °C , Subcooling = K

Pressure switch settings

Maximum HP switch setting	30	bar(g)
Minimum LP switch setting	0.5	bar(g)
LP pump down setting	1	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions

R407F

Cond. temp. in				Evapora	ating temperature	in °C (to)			
°C (tc)	-23	-20	-15	-10	-5	0	5	10	
Cooling capacity		1 0004	1.004	1			1	1	
10	2 830	3 231	4 001	4 914	-	-	-	-	-
20	2 552	2 933	3 667	4 537	5 561	6 754	-	-	-
30	2 233	2 586	3 268	4 080	5 039	6 162	7 465	8 965	-
40	1 886	2 202	2 816	3 555	4 434	5 472	6 683	8 085	-
45	-	-	2 575	3 271	4 105	5 094	6 253	7 600	-
50	-	-	-	2 976	3 760	4 696	5 801	7 089	-
55	-	-	-	-	3 402	4 281	5 326	6 552	-
60	-	-	-	-	-	-	-	-	-
Power input in V	v								
10	786	788	790	790	-	-	_	-	-
20	953	959	965	969	972	973	_	-	-
30	1 160	1 171	1 185	1 194	1 201	1 206	1 209	1 213	-
40	1 426	1 443	1 466	1 484	1 497	1 507	1 514	1 520	-
45	-	-	1 636	1 659	1 676	1 689	1 699	1 707	-
50	-	-	-	1 857	1 879	1 896	1 909	1 919	-
55	-	_	_	-	2 107	2 129	2 146	2 159	-
60	-	_	_	_	_	_	-	_	_
		1		1	I	1	l		
Current consum	ption in A								
10	1.82	1.84	1.87	1.88	-	-	-	-	-
20	2.40	2.42	2.45	2.46	2.47	2.47	-	-	-
30	2.73	2.75	2.78	2.80	2.81	2.81	2.82	2.83	-
40	3.03	3.05	3.08	3.09	3.10	3.10	3.11	3.12	-
45	-	-	3.27	3.28	3.29	3.30	3.30	3.31	-
50	-	-	-	3.54	3.55	3.55	3.56	3.57	-
55	-	-	-	-	3.90	3.90	3.90	3.91	-
60	-	-	-	-	-	-	-	-	-
Mass flow in kg/	h	_		1	T	1	ı	, ,	
10	49	56	69	83	-	-	-	-	-
20	48	55	68	83	100	120	-	-	-
30	46	53	66	81	98	119	142	169	-
40	43	49	62	77	95	115	139	166	-
45	-	-	60	75	93	113	137	164	-
50	-	-	-	72	90	110	134	161	-
55	-	-	-	-	86	107	131	158	-
60	-	-	-	-	-	-	-	-	-
Coefficient of pe	erformance (C.C	D.P.)							
10	3.60	4.10	5.07	6.22	-	-	-	-	-
20	2.68	3.06	3.80	4.68	5.72	6.94	-	-	-
30	1.92	2.21	2.76	3.42	4.20	5.11	6.17	7.39	-
40	1.32	1.53	1.92	2.40	2.96	3.63	4.41	5.32	-
45	-	-	1.57	1.97	2.45	3.02	3.68	4.45	-
50	-	-	-	1.60	2.00	2.48	3.04	3.69	-
55	-	-	-	-	1.61	2.01	2.48	3.04	-
60	-	-	-	-	-	-	-	-	-
Nominal perform	nance at to = -1	u °C, tc = 45 °C				Pressure switch	settings		

recommendation and experience and ex			
Cooling capacity	3 271	W	
Power input	1 659	W	
Current consumption	3.28	Α	
Mass flow	75	kg/h	
C.O.P.	1.97		

to: Evaporating temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

ı	Sound power level	67	dB(A)
ı	With accoustic hood	59	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 50 Hz, ARI rating conditions

R407F

Cond. temp. in				Evapora	ating temperature	in °C (to)			
°C (tc)	-23	-20	-15	-10	-5	0	5	10	
Cooling capacity		0.440	1.000	- 10 <i>1</i>		1			
10	2 991	3 413	4 223	5 184	-		-	-	-
20	2 713	3 117	3 894	4 814	5 895	7 155		-	-
30	2 392	2 769	3 495	4 359	5 379	6 572	7 956	9 546	-
40	-	2 380	3 041	3 834	4 777	5 888	7 185	8 683	-
45	-	-	2 797	3 549	4 448	5 513	6 760	8 208	-
50	-	-	-	3 252	4 104	5 118	6 313	7 706	-
55	-	-	-	-	-	4 706	5 846	7 181	-
60	-	-	-	-	-	-	-	-	-
Power input in V	N								
10	786	788	790	790	-	-	_	-	_
20	953	959	965	969	972	973	-	-	-
30	1 160	1 171	1 185	1 194	1 201	1 206	1 209	1 213	-
40	-	1 443	1 466	1 484	1 497	1 507	1 514	1 520	-
45	-	-	1 636	1 659	1 676	1 689	1 699	1 707	-
50	-	-	-	1 857	1 879	1 896	1 909	1 919	_
55	-	-	-	-	-	2 129	2 146	2 159	-
60	-	_	_	_	-	_	_	_	_
		1	I	I	1	1		I.	
urrent consum	nption in A								
10	1.82	1.84	1.87	1.88	-	-	-	-	-
20	2.40	2.42	2.45	2.46	2.47	2.47	-	-	-
30	2.73	2.75	2.78	2.80	2.81	2.81	2.82	2.83	-
40	-	3.05	3.08	3.09	3.10	3.10	3.11	3.12	-
45	-	-	3.27	3.28	3.29	3.30	3.30	3.31	-
50	-	-	-	3.54	3.55	3.55	3.56	3.57	-
55	-	-	-	-	-	3.90	3.90	3.91	-
60	-	-	-	-	-	-	-	-	-
Mass flow in kg/			T	T		T			
10	49	56	68	83	-	-	-	-	-
20	48	55	67	82	99	119	-	-	-
30	46	52	65	80	98	118	141	168	-
40	-	49	62	77	94	115	138	165	-
45	-	-	60	74	92	112	136	163	-
50	-	-	-	72	89	110	133	160	-
55	-	-	-	-	-	106	130	157	-
60	-	-	-	-	-	-	-	-	-
coefficient of pe	erformance (C.C	D.P.)							
10	3.81	4.33	5.35	6.56	-	-	-	-	-
	2.85	3.25	4.03	4.97	6.07	7.35	-	-	-
20		2.36	2.95	3.65	4.48	5.45	6.58	7.87	-
20 30	2.06	2.00				3.91	4.74	5.71	_
	2.06	1.65	2.07	2.58	3.19	3.91	7.77	5.7 1	
30			2.07 1.71	2.58 2.14	3.19 2.65	3.26	3.98	4.81	-
30 40	-	1.65			•			1	
30 40 45	-	1.65	1.71	2.14	2.65	3.26	3.98	4.81	-
30 40 45 50	- - -	1.65 - -	1.71	2.14 1.75	2.65 2.18	3.26 2.70	3.98 3.31	4.81 4.02	-

Nominal performance at to = -10 °C, tc = 45 °C

Cooling capacity	3 549	W
Power input	1 659	W
Current consumption	3.28	Α
Mass flow	74	kg/h
C.O.P.	2.14	

to: Evaporating temperature at dew point

Rating conditions : Superheat = 11.1 K , Subcooling = 8.3 K

Maximum HP switch	setting	29.7	bar(g)
Minimum LP switch s	setting	1.4	bar(g)
LP pump down settir	ng	2	bar(g)

Sound power data

Sound power level	67	dB(A)
With accoustic hood	59	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions

R407F

Cond. temp. in				Evapora	ating temperature	in °C (to)			
°C (tc)	-23	-20	-15	-10	-5	0	5	10	
Cooling capacity		0.077	4.070	1 0000		1	1	1	
10	3 355	3 877	4 878	6 062	-	-	-	-	-
20	2 986	3 480	4 421	5 528	6 822	8 321	-	-	-
30	2 591	3 051	3 924	4 948	6 143	7 527	9 122	10 946	-
40	2 171	2 594	3 393	4 326	5 415	6 677	8 134	9 805	-
45	-	-	3 115	4 001	5 033	6 232	7 618	9 209	-
50	-	-	-	3 666	4 641	5 774	7 087	8 597	-
55	-	-	-	-	4 238	5 304	6 542	7 969	-
60	-	-	-	-	-	-	-	-	-
Power input in V	v								
10	914	914	920	944	-	_	-	_	-
20	1 133	1 133	1 130	1 132	1 147	1 183	-	-	-
30	1 392	1 404	1 411	1 409	1 409	1 417	1 444	1 499	-
40	1 687	1 722	1 757	1 772	1 775	1 774	1 779	1 800	_
45	-	-	1 954	1 984	1 995	1 997	1 999	2 009	
50	_	_	-	2 215	2 240	2 249	2 252	2 257	_
55	-	_	_	-	2 508	2 530	2 539	2 543	_
60	_	_	-	_	-	-	-	-	_
00		1		1	I.		l	l l	
Current consum	ption in A								
10	1.80	1.82	1.84	1.84	-	-	-	-	-
20	2.39	2.41	2.43	2.44	2.44	2.44	-	-	-
30	2.73	2.75	2.78	2.80	2.80	2.81	2.82	2.83	-
40	3.00	3.04	3.07	3.10	3.11	3.12	3.14	3.16	-
45	-	-	3.25	3.28	3.30	3.32	3.34	3.36	_
50	-	-	-	3.53	3.55	3.57	3.60	3.62	-
55	-	-	-	-	3.88	3.91	3.93	3.96	-
60	-	-	-	-	-	-	-	-	-
<u> </u>		1	I.	11		1	JI.		
Mass flow in kg/	'h								
10	59	67	84	103	-	-	-	-	-
20	56	65	82	101	123	148	-	-	-
30	53	62	79	98	120	145	173	206	-
40	49	58	75	94	116	141	169	202	-
45	-	-	72	92	113	138	167	199	-
50	-	-	-	89	111	136	164	196	-
55	-	-	-	-	108	132	161	192	-
60	-	-	-	-	-	-	-	-	-
Coefficient of pe	erformance (C.0	D.P.)							
10	3.67	4.24	5.30	6.42	-	-	-	-	-
20	2.64	3.07	3.91	4.88	5.95	7.03	-	-	-
30	1.86	2.17	2.78	3.51	4.36	5.31	6.32	7.30	-
40	1.29	1.51	1.93	2.44	3.05	3.76	4.57	5.45	-
45	-	-	1.59	2.02	2.52	3.12	3.81	4.58	-
50	-	-	-	1.66	2.07	2.57	3.15	3.81	-
55	-	-	-	-	1.69	2.10	2.58	3.13	_
60	-	-	-	-	-	-	-	-	-
<u> </u>			•	•	•				
Nominal perforn	nance at to = -1	0 °C, tc = 45 °C			_	Pressure switch	settings		

	pooaoo at to	 		
Coolir	ng capacity	4 001	W	
Powe	r input	1 984	W	
Curre	nt consumption	3.28	Α	
Mass	flow	92	kg/h	
C.O.F) <u>.</u>	2.02		

to: Evaporating temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	71	dB(A)
With accoustic hood	63	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 60 Hz, ARI rating conditions

R407F

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-23	-20	-15	-10	-5	0	5	10	
O1114									
Cooling capacity		4.005	F 450	0.205	T	1	1		
10	3 545	4 095	5 150	6 395	- 7.000	- 0.044	-	-	-
20	3 175	3 698	4 694	5 865	7 232	8 814	-	-	-
30	2 776	3 267	4 197	5 288	6 558	8 029	9 721	11 655	-
40	-	2 805	3 664	4 666	5 834	7 186	8 745	10 531	-
45	-	-	3 384	4 341	5 454	6 745	8 235	9 945	-
50	-	-	-	4 006	5 064	6 293	7 713	9 345	-
55	-	-	-	-	-	5 831	7 180	8 734	-
60	-	-	-	-	-	-	-	-	-
Power input in \	N								
10	914	914	920	944	-	-	-	-	-
20	1 133	1 133	1 130	1 132	1 147	1 183	-	-	-
30	1 392	1 404	1 411	1 409	1 409	1 417	1 444	1 499	-
40	-	1 722	1 757	1 772	1 775	1 774	1 779	1 800	-
45	-	-	1 954	1 984	1 995	1 997	1 999	2 009	_
50	-	-	-	2 215	2 240	2 249	2 252	2 257	-
55	-	-	-	-	-	2 530	2 539	2 543	-
60	-	-	-	-	-	-	-	-	-
'		•	•	•	•	•	•		
urrent consum	nption in A								
10	1.80	1.82	1.84	1.84	-	-	-	-	-
20	2.39	2.41	2.43	2.44	2.44	2.44	-	-	-
30	2.73	2.75	2.78	2.80	2.80	2.81	2.82	2.83	-
40	-	3.04	3.07	3.10	3.11	3.12	3.14	3.16	-
45	-	-	3.25	3.28	3.30	3.32	3.34	3.36	-
50	-	-	-	3.53	3.55	3.57	3.60	3.62	-
55	-	-	-	-	-	3.91	3.93	3.96	-
60	-	-	-	-	-	-	-	-	-
Mass flow in kg		1	T	T	T	1	1		
10	58	67	83	102	-	-	-	-	-
20	56	65	81	100	122	147	-	-	-
30	53	62	78	97	119	144	172	205	-
40	-	58	74	93	115	140	168	200	-
45	-	-	72	91	113	138	166	198	-
50	-	-	-	88	110	135	163	195	-
55	-	-	-	-	-	132	160	191	-
60	-	-	-	-	-	-	-	-	-
Coefficient of pe	erformance (C.C).P.)							
10	3.88	4.48	5.60	6.77	-	-	-	-	-
20	2.80	3.26	4.15	5.18	6.31	7.45	-	-	-
30	1.99	2.33	2.98	3.75	4.66	5.67	6.73	7.78	-
40	-	1.63	2.08	2.63	3.29	4.05	4.91	5.85	-
45	-	-	1.73	2.19	2.73	3.38	4.12	4.95	_
50	-	-	-	1.81	2.26	2.80	3.42	4.14	_
		_	-	-	-	2.30	2.83	3.43	_
	-							0.10	
55 60	-	-	_	-	-	-	_	_	-

to: Evaporating temperature at dew point

Cooling capacity Power input

Mass flow

C.O.P.

Current consumption

tc: Condensing temperature at dew point

Rating conditions : Superheat = 11.1 K , Subcooling = 8.3 K

4 341

1 984

3.28

91

2.19

W

W

kg/h

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	71	dB(A)	
With accoustic hood	63	dB(A)	

Tolerance according EN12900

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R448A

Cond. temp. in	Evaporating temperature in °C (to)										
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10		
Cooling capacity	/ in W	_	ı	1	ı	ı	1	1	1		
10	1 965	2 470	3 075	3 797	4 650	-	-	-	-		
20	1 766	2 255	2 834	3 519	4 324	5 264	6 355	-	-		
30	-	-	2 544	3 180	3 926	4 796	5 805	6 969	8 303		
40	-	-	-	2 792	3 466	4 254	5 171	6 231	7 450		
50	-	-	-	-	2 955	3 650	4 463	5 408	6 501		
60	-	-	-	-	-	-	3 690	4 509	5 465		
Power input in V	v										
10	775	785	796	806	811	-	_	_	_		
20	955	956	965	980	996	1 009	1 018	_	-		
30	-	-	1 188	1 194	1 208	1 227	1 247	1 264	1 275		
40	_	_	-	1 496	1 497	1 508	1 527	1 549	1 573		
50	_	_	_	-	1 908	1 900	1 905	1 921	1 944		
60	_	-	_	-	-	-	2 429	2 426	2 436		
			1	1	1	1	1	-			
Current consum	ption in A	1	1	T	1	1		1	1		
10	2.51	2.50	2.50	2.49	2.48	-	-	-	-		
20	2.61	2.62	2.63	2.64	2.65	2.65	2.66	-	-		
30	-	-	2.81	2.83	2.85	2.86	2.88	2.89	2.91		
40	-	-	-	3.13	3.15	3.16	3.18	3.20	3.21		
50	-	-	-	-	3.61	3.62	3.63	3.64	3.65		
60	-	-	-	-	-	-	4.29	4.28	4.28		
Mass flow in kg/	h										
10 10	32	41	51	63	77	_	_	_	_		
20	31	40	50	62	77	94	115	_	_		
30	-	-	49	61	76	93	114	139	167		
40	<u>-</u>	-	-	59	73	91	112	136	165		
50	-	-	-	-	70	87	108	130	161		
60	_	_	_	_	-	-	102	126	155		
00		1	I		I	I	.02	0			
Coefficient of pe	rformance (C.C	D.P.)									
10	2.54	3.15	3.86	4.71	5.73	-	-	-	-		
20	1.85	2.36	2.94	3.59	4.34	5.22	6.24	-	-		
30	-	-	2.14	2.66	3.25	3.91	4.66	5.51	6.51		
40	-	-	-	1.87	2.32	2.82	3.39	4.02	4.74		
50	-	-	-	-	1.55	1.92	2.34	2.82	3.34		
60	-	-	-	-	-	-	1.52	1.86	2.24		

Nominal	performance	at to =	-10 °C	. tc = 45 °C

Cooling capacity	3 216	W
Power input	1 684	W
Current consumption	3.35	Α
Mass flow	72	kg/h
C.O.P.	1.91	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}\text{C}$, Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Superheat = 10 K

R448A

Cond. temp. in				Evapora	ating temperature	in °C (to)			
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
				•		-			
Cooling capacity	in W								
10	1 974	2 482	3 093	3 821	4 680	-	-	-	-
20	1 751	2 241	2 823	3 512	4 323	5 270	6 367	-	-
30	1 503	1 962	2 504	3 142	3 893	4 772	5 792	6 965	8 303
40	-	-	2 147	2 723	3 402	4 200	5 132	6 211	7 450
50	-	-	-	2 266	2 862	3 567	4 398	5 371	6 501
60	-	-	-	-	2 282	2 882	3 601	4 456	5 465
Power input in W	<i>I</i>								
10	775	785	796	806	811	-	-	-	-
20	955	956	965	980	996	1 009	1 018	-	-
30	1 211	1 192	1 188	1 194	1 208	1 227	1 247	1 264	1 275
40	-	-	1 510	1 496	1 497	1 508	1 527	1 549	1 573
50	-	-	-	1 933	1 908	1 900	1 905	1 921	1 944
60	-	-	-	-	2 488	2 448	2 429	2 426	2 436
Current consum	ption in A								
10	2.51	2.50	2.50	2.49	2.48	-	-	-	-
20	2.61	2.62	2.63	2.64	2.65	2.65	2.66	-	-
30	2.78	2.80	2.81	2.83	2.85	2.86	2.88	2.89	2.91
40	-	-	3.12	3.13	3.15	3.16	3.18	3.20	3.21
50	-	-	-	3.61	3.61	3.62	3.63	3.64	3.65
60	-	-	-	-	4.31	4.30	4.29	4.28	4.28
Mass flow in kg/	h								•
10	38	47	58	70	85	-	-	-	-
20	37	46	57	70	85	102	121	-	-
30	35	44	55	68	83	100	120	142	167
40	-	-	53	66	80	98	117	140	165
50	-	-	-	61	76	93	113	136	161
60	-	-	-	-	71	88	107	130	155
Coefficient of pe	rformance (C.C	D.P.)							
10	2.55	3.16	3.88	4.74	5.77	-	-	-	-
20	1.83	2.34	2.92	3.58	4.34	5.22	6.26	-	-
30	1.24	1.65	2.11	2.63	3.22	3.89	4.65	5.51	6.51
40	-	-	1.42	1.82	2.27	2.78	3.36	4.01	4.74
50	-	-	-	1.17	1.50	1.88	2.31	2.80	3.34
60	-	-	-	-	0.92	1.18	1.48	1.84	2.24

Nominal performance	at to = -10 °C	, tc = 45 °C

Cooling capacity	3 137	W
Power input	1 684	W
Current consumption	3.35	Α
Mass flow	79	kg/h
C.O.P.	1.86	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K $\,$

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R448A

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
						•	•		
Cooling capacity	in W								
10	2 255	2 893	3 665	4 588	5 682	-	-	-	-
20	1 997	2 597	3 311	4 159	5 158	6 328	7 686		-
30	-	-	2 961	3 730	4 632	5 686	6 910	8 324	9 945
40	-	-	-	3 302	4 104	5 039	6 126	7 384	8 830
50	-	-	-	-	3 573	4 387	5 334	6 433	7 703
60	-	-	-	-	-	-	4 534	5 472	6 561
Power input in W	ı								
10	836	867	898	922	935	-	-	-	-
20	1 062	1 088	1 120	1 153	1 181	1 198	1 201	-	-
30	-	-	1 378	1 407	1 438	1 466	1 485	1 490	1 476
40	-	-	-	1 736	1 759	1 785	1 809	1 825	1 829
50	-	-	-	-	2 192	2 205	2 222	2 239	2 250
60	-	-	-	-	-	-	2 776	2 781	2 787
Current consum	ption in A								
10	2.22	2.24	2.27	2.29	2.30	-	-	-	-
20	2.42	2.43	2.46	2.49	2.52	2.53	2.53		-
30	-	-	2.68	2.70	2.73	2.77	2.79	2.80	2.78
40	-	-	-	3.02	3.04	3.07	3.10	3.13	3.15
50	-	-	-	-	3.51	3.52	3.55	3.58	3.62
60	-	-	-	-	-	-	4.22	4.24	4.27
Mass flow in kg/l	h								
10	37	48	60	76	94	-	-	-	-
20	35	46	59	74	92	114	139	-	-
30	-	-	57	72	89	111	136	165	200
40	-	-	-	69	87	108	132	161	195
50	-	-	-	-	84	105	129	157	191
60	-	-	-	-	-	-	125	153	186
Coefficient of pe	rformance (C.C	D.P.)							
10	2.70	3.34	4.08	4.97	6.08	-	-	-	-
20	1.88	2.39	2.96	3.61	4.37	5.28	6.40	-	-
30	-	-	2.15	2.65	3.22	3.88	4.65	5.59	6.74
40	-	-	-	1.90	2.33	2.82	3.39	4.05	4.83
50	-	-	-	-	1.63	1.99	2.40	2.87	3.42
60	-	_	_	-	-	-	1.63	1.97	2.35

Nominal	performance	at to =	-10 °C	. tc = 45 °C

Cooling capacity	3 839	W
Power input	1 958	W
Current consumption	3.25	Α
Mass flow	85	kg/h
C.O.P.	1.96	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}\text{C}$, Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Superheat = 10 K

R448A

Cond. temp. in	Evaporating temperature in °C (to)								
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
Cooling capacit	y in W			•					
10	2 264	2 907	3 685	4 616	5 718	-	-	-	-
20	1 980	2 580	3 297	4 150	5 157	6 335	7 701	-	-
30	1 706	2 260	2 914	3 685	4 594	5 657	6 894	8 319	9 945
40	-	-	2 533	3 221	4 028	4 975	6 080	7 360	8 830
50	-	-	-	2 756	3 460	4 287	5 257	6 390	7 703
60	-	-	-	-	2 886	3 591	4 424	5 407	6 561
Power input in V	v								
10	836	867	898	922	935	-	_	_	_
20	1 062	1 088	1 120	1 153	1 181	1 198	1 201	_	-
30	1 347	1 357	1 378	1 407	1 438	1 466	1 485	1 490	1 476
40	-	-	1 722	1 736	1 759	1 785	1 809	1 825	1 829
50	-	-	-	2 190	2 192	2 205	2 222	2 239	2 250
60	-	-	-	-	2 789	2 777	2 776	2 781	2 787
				•	1	•	•	•	
Current consum	ption in A								
10	2.22	2.24	2.27	2.29	2.30	-	-	-	-
20	2.42	2.43	2.46	2.49	2.52	2.53	2.53		-
30	2.69	2.67	2.68	2.70	2.73	2.77	2.79	2.80	2.78
40	-	-	3.02	3.02	3.04	3.07	3.10	3.13	3.15
50	-	-	-	3.53	3.51	3.52	3.55	3.58	3.62
60	-	-	-	-	4.25	4.22	4.22	4.24	4.27
Mass flow in kg	h								
10	43	55	69	85	104	-	-	-	-
20	41	53	67	83	101	122	147	-	-
30	39	51	65	80	98	119	143	170	200
40	-	-	62	78	95	116	139	166	195
50	-	-	-	75	92	112	135	161	191
60	-	-	-	-	89	109	132	157	186
									
Coefficient of pe	erformance (C.C	D.P.)	T	1	•	_	•	1	1
10	2.71	3.35	4.10	5.01	6.11	-	-		-
20	1.86	2.37	2.94	3.60	4.37	5.29	6.41	-	-
30	1.27	1.67	2.11	2.62	3.19	3.86	4.64	5.58	6.74
40	-	-	1.47	1.85	2.29	2.79	3.36	4.03	4.83
50	-	-	-	1.26	1.58	1.94	2.37	2.85	3.42
60	-	-	-	-	1.03	1.29	1.59	1.94	2.35
									<u></u>
Nominal perform	nance at to = -1	0 °C, tc = 45 °C				Pressure switch	settings		

Mass flow	
C.O.P.	

Cooling capacity

Current consumption

Power input

to: Evaporating temperature at dew point tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

3 744

1 958

3.25

1.91

94

W

W

kg/h

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R449A

Cond. temp. in	Evaporating temperature in °C (to)								
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
Cooling capacity		1		I	1	1	1	1	ı
10	1 965	2 470	3 075	3 797	4 650	-	-	-	-
20	1 766	2 255	2 834	3 519	4 324	5 264	6 355	-	-
30	-	-	2 544	3 180	3 926	4 796	5 805	6 969	8 303
40	-	-	-	2 792	3 466	4 254	5 171	6 231	7 450
50	-	-	-	-	2 955	3 650	4 463	5 408	6 501
60	-	-	-	-	-	-	3 690	4 509	5 465
Power input in W	,								
10	775	785	796	806	811	_	_	_	_
20	955	956	965	980	996	1 009	1 018	_	_
30	-	-	1 188	1 194	1 208	1 227	1 247	1 264	1 275
40	_	_	-	1 496	1 497	1 508	1 527	1 549	1 573
50		_	_	-	1 908	1 900	1 905	1 921	1 944
60	<u> </u>	-	_	_	-	-	2 429	2 426	2 436
60		-	-	-	-	-	2 429	2 420	2 430
Current consump	otion in A								
10	2.51	2.50	2.50	2.49	2.48	-	-	-	-
20	2.61	2.62	2.63	2.64	2.65	2.65	2.66	-	-
30	-	-	2.81	2.83	2.85	2.86	2.88	2.89	2.91
40	-	-	-	3.13	3.15	3.16	3.18	3.20	3.21
50	-	-	-	-	3.61	3.62	3.63	3.64	3.65
60	-	-	_	_	-	_	4.29	4.28	4.28
<u> </u>		· U	•	1	U		U.		
Mass flow in kg/h		T		T	T	1	I	1	1
10	32	41	51	63	77	-	-	-	-
20	31	40	50	62	77	94	115	-	-
30	-	-	49	61	76	93	114	139	167
40	-	-	-	59	73	91	112	136	165
50	-	-	-	-	70	87	108	132	161
60	-	-	-	-	-	-	102	126	155
Coefficient of per	rformance (C.C) P)							
10	2.54	3.15	3.86	4.71	5.73	-	-	-	-
20	1.85	2.36	2.94	3.59	4.34	5.22	6.24	-	-
30	-	-	2.14	2.66	3.25	3.91	4.66	5.51	6.51
40	-	-	-	1.87	2.32	2.82	3.39	4.02	4.74
50	-	_	_	_	1.55	1.92	2.34	2.82	3.34
60	_	_	_	_	-	-	1.52	1.86	2.24

Nominal	performance	at to =	-10 °C.	tc = 45 °C

Cooling capacity	3 216	W
Power input	1 684	W
Current consumption	3.35	Α
Mass flow	72	kg/h
C.O.P.	1.91	
Mass flow	72	kg/h

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}\text{C}$, Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Superheat = 10 K

R449A

Cond. temp. in		Evaporating temperature in °C (to)									
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10		
Cooling capacity	y in W		•	•							
10	1 969	2 477	3 088	3 816	4 676	-	-	-	-		
20	1 746	2 236	2 817	3 507	4 318	5 266	6 364	-	-		
30	1 498	1 957	2 498	3 137	3 888	4 767	5 788	6 963	8 303		
40	-	-	2 141	2 717	3 397	4 195	5 128	6 209	7 450		
50	-	-	-	2 260	2 856	3 561	4 394	5 369	6 501		
60	-	-	-	-	2 277	2 877	3 597	4 453	5 465		
Power input in V	v										
10	775	785	796	806	811	_	_	_	-		
20	955	956	965	980	996	1 009	1 018	-	-		
30	1 211	1 192	1 188	1 194	1 208	1 227	1 247	1 264	1 275		
40	-	-	1 510	1 496	1 497	1 508	1 527	1 549	1 573		
50	-	-	-	1 933	1 908	1 900	1 905	1 921	1 944		
60	-	_	-	-	2 488	2 448	2 429	2 426	2 436		
		I.	I	1							
Current consum	ption in A										
10	2.51	2.50	2.50	2.49	2.48	-	-	-	-		
20	2.61	2.62	2.63	2.64	2.65	2.65	2.66	-	-		
30	2.78	2.80	2.81	2.83	2.85	2.86	2.88	2.89	2.91		
40	-	-	3.12	3.13	3.15	3.16	3.18	3.20	3.21		
50	-	-	-	3.61	3.61	3.62	3.63	3.64	3.65		
60	-	-	-	-	4.31	4.30	4.29	4.28	4.28		
Mass flow in kg/	'h										
10	38	47	58	70	85	-	-	-	-		
20	37	46	57	70	85	102	121	-	-		
30	35	44	55	68	83	100	120	142	167		
40	-	-	53	66	80	98	117	140	165		
50	-	-	-	61	76	93	113	136	161		
60	-	-	-	-	71	88	107	130	155		
		•			-	•	•				
Coefficient of pe	erformance (C.C	D.P.)		_					1		
10	2.54	3.16	3.88	4.73	5.76	-	-	-	-		
20	1.83	2.34	2.92	3.58	4.34	5.22	6.25	-	-		
30	1.24	1.64	2.10	2.63	3.22	3.88	4.64	5.51	6.51		
40	-	-	1.42	1.82	2.27	2.78	3.36	4.01	4.74		
50	-	-	-	1.17	1.50	1.87	2.31	2.79	3.34		
60	-	-	-	-	0.91	1.18	1.48	1.84	2.24		
Nominal perforn	nance at to = -1	0 °C, tc = 45 °C				Pressure switch	settings				

Cooling capacity

Current consumption

Power input

Mass flow

C.O.P.

to: Evaporating temperature at dew point tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

3 132

1 684

3.35

1.86

79

W

W

kg/h

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R449A

Cond. temp. in	Evaporating temperature in °C (to)									
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10	
Cooling capacity	/ in W	1	•	1	•	•	ı	1	1	
10	2 255	2 893	3 665	4 588	5 682	-	-	-	-	
20	1 997	2 597	3 311	4 159	5 158	6 328	7 686	-	-	
30	-	-	2 961	3 730	4 632	5 686	6 910	8 324	9 945	
40	-	-	-	3 302	4 104	5 039	6 126	7 384	8 830	
50	-	-	-	-	3 573	4 387	5 334	6 433	7 703	
60	-	-	-	-	-	-	4 534	5 472	6 561	
Power input in V	V									
10	836	867	898	922	935	-	_	_	-	
20	1 062	1 088	1 120	1 153	1 181	1 198	1 201	-	-	
30	-	-	1 378	1 407	1 438	1 466	1 485	1 490	1 476	
40	-	-	_	1 736	1 759	1 785	1 809	1 825	1 829	
50	-	-	_	-	2 192	2 205	2 222	2 239	2 250	
60	-	_	_	_	-	-	2 776	2 781	2 787	
		.	1.	.	1.0	1.0	· •	•	•	
Current consum	ption in A									
10	2.22	2.24	2.27	2.29	2.30	-	-	-	-	
20	2.42	2.43	2.46	2.49	2.52	2.53	2.53	-	-	
30	-	-	2.68	2.70	2.73	2.77	2.79	2.80	2.78	
40	-	-	-	3.02	3.04	3.07	3.10	3.13	3.15	
50	-	-	-	-	3.51	3.52	3.55	3.58	3.62	
60	-	-	-	-	-	-	4.22	4.24	4.27	
Mana flaurin ku/	L									
Mass flow in kg/	n 37	48	61	77	96	_	_	_	_	
20	36	47	59	75	93	116	142	-	_	
30	-	-	58	73	93	113	138	169	204	
40	<u> </u>	-	-	71	88	110	135	165	199	
50	-	-	-	-	86	107	131	161	199	
60		-		-	-	-	128	156	190	
00							120	100	130	
Coefficient of pe	rformance (C.C	D.P.)								
10	2.70	3.34	4.08	4.97	6.08	-	-	-	-	
20	1.88	2.39	2.96	3.61	4.37	5.28	6.40	-	-	
30	-	-	2.15	2.65	3.22	3.88	4.65	5.59	6.74	
40	-	-	-	1.90	2.33	2.82	3.39	4.05	4.83	
50	-	-	-	-	1.63	1.99	2.40	2.87	3.42	
60	-	-	-	-	-	-	1.63	1.97	2.35	

Nominal	performance	at to =	-10 °C	. tc = 45 °C

Cooling capacity	3 839	W
Power input	1 958	W
Current consumption	3.25	Α
Mass flow	87	kg/h
C.O.P.	1.96	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}\text{C}$, Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Superheat = 10 K

R449A

Cond. temp. in	Evaporating temperature in °C (to)									
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10	
Cooling capacity	in W									
10	2 259	2 902	3 680	4 611	5 713	-	-	-	-	
20	1 975	2 575	3 292	4 144	5 151	6 330	7 697	-	-	
30	1 700	2 254	2 908	3 679	4 587	5 652	6 890	8 316	9 945	
40	-	-	2 527	3 214	4 022	4 969	6 075	7 357	8 830	
50	-	-	-	2 749	3 453	4 280	5 252	6 387	7 703	
60	-	-	-	-	2 879	3 584	4 419	5 404	6 561	
Power input in V	ı									
10	836	867	898	922	935	-	-	_	_	
20	1 062	1 088	1 120	1 153	1 181	1 198	1 201	-	-	
30	1 347	1 357	1 378	1 407	1 438	1 466	1 485	1 490	1 476	
40	-	-	1 722	1 736	1 759	1 785	1 809	1 825	1 829	
50	-	-	-	2 190	2 192	2 205	2 222	2 239	2 250	
60	-	-	-	-	2 789	2 777	2 776	2 781	2 787	
•		· ·				1				
Current consum	ption in A									
10	2.22	2.24	2.27	2.29	2.30	-	-	-	-	
20	2.42	2.43	2.46	2.49	2.52	2.53	2.53	-	-	
30	2.69	2.67	2.68	2.70	2.73	2.77	2.79	2.80	2.78	
40	-	-	3.02	3.02	3.04	3.07	3.10	3.13	3.15	
50	-	-	-	3.53	3.51	3.52	3.55	3.58	3.62	
60	-	-	-	-	4.25	4.22	4.22	4.24	4.27	
Mass flow in kg/	h									
10	44	56	70	86	105	_	-	_	_	
20	42	54	68	84	103	124	149	-	-	
30	40	52	66	81	100	121	146	173	204	
40	_	_	63	79	97	118	142	169	199	
50	-	-	-	76	94	115	138	165	195	
60	-	-	_	-	91	111	135	161	190	
		1	1	1		1	1	1	1	
Coefficient of pe	rformance (C.C).P.)								
10	2.70	3.35	4.10	5.00	6.11	-	-	-	-	
20	1.86	2.37	2.94	3.59	4.36	5.28	6.41	-	-	
30	1.26	1.66	2.11	2.61	3.19	3.86	4.64	5.58	6.74	
40	-	-	1.47	1.85	2.29	2.78	3.36	4.03	4.83	
50	-	-	-	1.26	1.57	1.94	2.36	2.85	3.42	
60	_	_	_	-	1.03	1.29	1.59	1.94	2.35	

to: Evaporating	tamparatura	at	dow	noin

Cooling capacity

Current consumption

Power input

Mass flow

C.O.P.

Nominal performance at to = -10 °C, tc = 45 °C

3 738

1 958

3.25

1.91

96

W

W

kg/h

tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K $\,$

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R452A

Cond. temp. in	Evaporating temperature in °C (to)									
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10	
Cooling capacity		1	,	T		1	1	ı	1	
10	2 171	2 716	3 381	4 182	5 130	-	-	-	-	
20	1 941	2 447	3 057	3 785	4 645	5 650	6 816	-	-	
30	-	2 185	2 732	3 380	4 144	5 036	6 072	7 265	8 629	
40	-	-	2 403	2 964	3 624	4 397	5 296	6 335	7 529	
50	-	-	-	-	3 083	3 729	4 484	5 362	6 379	
60	-	-	-	-	-	3 028	3 633	4 344	5 176	
Power input in V	V									
10	795	815	828	832	829	-		_	-	
20	946	974	995	1 009	1 015	1 012	1 002	-	-	
30	-	1 181	1 209	1 230	1 242	1 248	1 245	1 234	1 215	
40	-	-	1 488	1 513	1 532	1 542	1 545	1 540	1 527	
50	-	-	-	-	1 900	1 915	1 922	1 921	1 912	
60	-	-	-	-	-	2 384	2 393	2 395	2 389	
		•	•	1.0	1.		•	•	•	
Current consum	ption in A						1			
10	2.42	2.44	2.45	2.46	2.47	-	-	-	-	
20	2.56	2.59	2.61	2.62	2.63	2.63	2.62	-	-	
30	-	2.77	2.80	2.82	2.83	2.84	2.84	2.82	2.81	
40	-	-	3.07	3.10	3.12	3.14	3.14	3.14	3.12	
50	-	-	-	-	3.54	3.56	3.58	3.58	3.57	
60	-	-	-	-	-	4.15	4.18	4.19	4.20	
Mass flow in kg/	h									
10	44	55	69	86	106	-	_	_	_	
20	43	54	68	84	104	128	156	_	_	
30	-	53	67	83	102	125	153	185	223	
40	_	-	65	81	100	122	149	181	218	
50		-	-	-	97	119	145	176	213	
60	-	-	_	-	-	115	141	171	207	
		1	1	1	L		1	1	1	
Coefficient of pe	erformance (C.C	D.P.)								
10	2.73	3.33	4.09	5.02	6.19	-	-	-	-	
20	2.05	2.51	3.07	3.75	4.58	5.58	6.80	-	-	
30	-	1.85	2.26	2.75	3.34	4.04	4.88	5.89	7.10	
40	-	-	1.61	1.96	2.37	2.85	3.43	4.11	4.93	
50	-	-	-	-	1.62	1.95	2.33	2.79	3.34	
60	-	-	-	-	-	1.27	1.52	1.81	2.17	

Nominal	performance	at to =	-10 °C	. tc = 45 °C

Cooling capacity	3 357	W
Power input	1 705	W
Current consumption	3.31	Α
Mass flow	98	kg/h
C.O.P.	1.97	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}\text{C}$, Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Superheat = 10 K

R452A

Cond. temp. in		Evaporating temperature in °C (to)							
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10
Cooling capacity	in W			•					
10	2 101	2 644	3 311	4 117	5 076	-	-	-	-
20	1 843	2 342	2 950	3 681	4 551	5 574	6 763	-	-
30	1 598	2 047	2 589	3 238	4 011	4 922	5 987	7 220	8 629
40	1 361	1 754	2 223	2 783	3 452	4 246	5 180	6 269	7 529
50	-	-	1 847	2 313	2 872	3 540	4 336	5 276	6 379
60	-	-	-	-	2 261	2 798	3 449	4 235	5 176
Power input in W	ı								
10	795	815	828	832	829	_	_	_	_
20	946	974	995	1 009	1 015	1 012	1 002	-	-
30	1 146	1 181	1 209	1 230	1 242	1 248	1 245	1 234	1 215
40	1 414	1 455	1 488	1 513	1 532	1 542	1 545	1 540	1 527
50	-	-	1 849	1 878	1 900	1 915	1 922	1 921	1 912
60	-	-	-	-	2 367	2 384	2 393	2 395	2 389
		•		•	1		•	•	
Current consum	ption in A								
10	2.42	2.44	2.45	2.46	2.47	-	-	-	-
20	2.56	2.59	2.61	2.62	2.63	2.63	2.62	-	-
30	2.73	2.77	2.80	2.82	2.83	2.84	2.84	2.82	2.81
40	2.98	3.03	3.07	3.10	3.12	3.14	3.14	3.14	3.12
50	-	-	3.45	3.50	3.54	3.56	3.58	3.58	3.57
60	-	-	-	-	4.11	4.15	4.18	4.19	4.20
Mass flow in kg/l			T			1	T	1	
10	52	65	79	97	117	-	-	-	-
20	51	63	78	95	115	138	164	-	-
30	50	62	76	93	112	135	161	190	223
40	49	61	74	91	110	132	157	186	218
50	-	-	73	88	107	128	153	181	213
60	-	-	-	-	103	124	148	176	207
Coefficient of pe	rformance (C. () P)							
10	2.64	3.24	4.00	4.95	6.12	-	-	-	-
20	1.95	2.40	2.96	3.65	4.49	5.51	6.75	-	-
30	1.39	1.73	2.14	2.63	3.23	3.95	4.81	5.85	7.10
40	0.96	1.21	1.49	1.84	2.25	2.75	3.35	4.07	4.93
50	-	-	1.00	1.23	1.51	1.85	2.26	2.75	3.34
60	-	-	-	-	0.96	1.17	1.44	1.77	2.17
		1	ı	1	1	1	1	1	
Nominal perform	nance at to = -1	0 °C, tc = 45 °C				Pressure switch	settings		
					Г				

Cooling capacity

Current consumption

Power input

Mass flow

C.O.P.

to: Evaporating temperature at dew point tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

3 165

1 705

3.31

108

1.86

W

W

kg/h

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R452A

Cond. temp. in	Evaporating temperature in °C (to)									
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10	
Cooling capacity	2 614	3 273	4 077	5 042	6 183	_	_	1	_	
-		+	-	1				-		
20	2 343	2 956	3 696	4 579	5 621	6 837	8 243	-	-	
30	-	2 648	3 311	4 099	5 028	6 113	7 371	8 817	10 466	
40	-	-	2 925	3 605	4 407	5 349	6 444	7 711	9 163	
50	-	-	-	-	3 762	4 546	5 467	6 540	7 782	
60	-	-	-	-	-	3 710	4 442	5 309	6 328	
Power input in W	ı									
10	956	989	1 009	1 020	1 022	-	_	_	-	
20	1 136	1 182	1 215	1 236	1 246	1 248	1 243	-	-	
30	-	1 424	1 468	1 499	1 517	1 525	1 523	1 515	1 501	
40	-	-	1 788	1 827	1 852	1 865	1 867	1 860	1 845	
50	-	-	-	-	2 271	2 288	2 292	2 285	2 269	
60	-	_	-	_	_	2 812	2 818	2 810	2 792	
		•	•	··	1	•	•			
Current consum	ption in A									
10	2.41	2.38	2.36	2.36	2.36	-	-	-	-	
20	2.53	2.53	2.53	2.54	2.54	2.55	2.56	-	-	
30	-	2.72	2.75	2.78	2.80	2.81	2.81	2.80	2.79	
40	-	-	3.04	3.10	3.14	3.16	3.17	3.15	3.12	
50	-	-	-	-	3.57	3.62	3.64	3.63	3.59	
60	-	-	-	-	-	4.19	4.23	4.24	4.21	
Mass flow in kg/l		T		T		1		1	1	
10	53	67	84	104	128	-	-	-	-	
20	51	66	82	102	126	155	188	-	-	
30	-	64	81	100	124	152	185	225	271	
40	-	-	79	98	121	149	181	220	266	
50	-	-	-	-	118	145	177	215	259	
60	-	-	-	-	-	141	172	209	253	
Coefficient of pe	rformance (C.C).P.)								
10	2.73	3.31	4.04	4.94	6.05	_	-	_	_	
20	2.06	2.50	3.04	3.71	4.51	5.48	6.63	_	_	
30	-	1.86	2.25	2.73	3.31	4.01	4.84	5.82	6.97	
40	-	-	1.64	1.97	2.38	2.87	3.45	4.15	4.97	
50	-	_	-	-	1.66	1.99	2.39	2.86	3.43	
60	<u> </u>	-	-	_	-	1.32	1.58	1.89	2.27	

Nominal	performance	at to =	-10 °C	. tc = 45 °C

Cooling capacity	4 088	W
Power input	2 050	W
Current consumption	3.34	Α
Mass flow	120	kg/h
C.O.P.	1.99	

to: Evaporating temperature at dew point

tc: Condensing temperature at dew point

Rating conditions : Suction gas temp. = 20 $^{\circ}\text{C}$, Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Superheat = 10 K

R452A

Cond. temp. in	Evaporating temperature in °C (to)										
°C (tc)	-30	-25	-20	-15	-10	-5	0	5	10		
S 11											
Cooling capacity		2.400	2 002	4.002	0.110	_	_	1			
10	2 530	3 186	3 992	4 963	6 118			-	-		
20	2 223	2 829	3 567	4 454	5 508	6 745	8 180	-	-		
30	1 939	2 481	3 137	3 927	4 867	5 975	7 269	8 762	10 466		
40	1 676	2 142	2 706	3 385	4 198	5 165	6 303	7 631	9 163		
50	-	-	2 272	2 829	3 504	4 316	5 286	6 435	7 782		
60	-	-	-	-	2 782	3 428	4 218	5 176	6 328		
Power input in V	v										
10	956	989	1 009	1 020	1 022	-	-	-	-		
20	1 136	1 182	1 215	1 236	1 246	1 248	1 243	-	-		
30	1 364	1 424	1 468	1 499	1 517	1 525	1 523	1 515	1 501		
40	1 661	1 734	1 788	1 827	1 852	1 865	1 867	1 860	1 845		
50	-	-	2 194	2 240	2 271	2 288	2 292	2 285	2 269		
60	-	_	_	_	2 792	2 812	2 818	2 810	2 792		
Current consum	ntion in A										
10	2.41	2.38	2.36	2.36	2.36	-	_	_	_		
20	2.53	2.53	2.53	2.54	2.54	2.55	2.56	_	-		
30	2.69	2.72	2.75	2.78	2.80	2.81	2.81	2.80	2.79		
40	2.88	2.97	3.04	3.10	3.14	3.16	3.17	3.15	3.12		
50	-	-	3.40	3.50	3.57	3.62	3.64	3.63	3.59		
60	-	_	-	-	4.11	4.19	4.23	4.24	4.21		
		I	l	L							
Mass flow in kg/	h										
10	62	78	96	116	141	-	-	-	-		
20	61	76	94	115	139	167	199	-	-		
30	60	75	92	113	136	164	195	231	271		
40	60	74	91	110	133	160	191	226	266		
50	-	-	89	108	130	156	186	221	259		
60	-	-	-	-	127	152	181	215	253		
Coefficient of pe	•	T .	0.05	4.07	5.00	1	1	ı			
10	2.65	3.22	3.95	4.87	5.99	-	-	-	-		
20	1.96	2.39	2.94	3.60	4.42	5.40	6.58	-	-		
30	1.42	1.74	2.14	2.62	3.21	3.92	4.77	5.78	6.97		
40	1.01	1.24	1.51	1.85	2.27	2.77	3.38	4.10	4.97		
50	-	-	1.04	1.26	1.54	1.89	2.31	2.82	3.43		
60	-	-	-	-	1.00	1.22	1.50	1.84	2.27		

Cooling capacity	3 854	VV
Power input	2 050	W
Current consumption	3.34	Α
Mass flow	132	kg/h
C.O.P.	1.88	
•		

to: Evaporating temperature at dew point

Nominal performance at to = -10 °C, tc = 45 °C

tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K $\,$

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R513A

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-15	-10	-5	0	5	10	15	18	
	. : \A/								
ooling capacity	2 489	3 051	3 733	_	_	_		T T	
				+	1	+	-	-	-
20	2 274	2 799	3 431	4 183	5 065	-	-	-	-
30	2 047	2 530	3 107	3 790	4 591	5 521	- 5.074	-	<u>-</u>
40 50		2 248	2 764	3 373	4 087	4 917	5 874	6 514	
50 60	-	-	2 405	2 935 2 479	3 556 3 002	4 280 3 615	5 119 4 329	5 681 4 811	-
70		-		2 008	2 427			3 906	
73	<u>-</u>	-	-	-	2 252	2 924 2 712	3 508 3 256	3 628	<u>-</u>
73	-				2 232	2712	3 230	3 028	
ower input in W	ı								
10	535	540	544	-	-	-	-	-	-
20	666	674	676	676	676	-	-	-	-
30	808	824	829	829	824	817	-	-	-
40	-	995	1 009	1 013	1 008	997	984	975	-
50	-	-	1 222	1 234	1 234	1 224	1 207	1 195	-
60	-	-	-	1 499	1 508	1 504	1 488	1 474	-
70	-	-	-	1 812	1 836	1 842	1 833	1 821	-
73	-	-	-	-	1 946	1 956	1 950	1 939	-
urrent consum			1	1	·	T	1		
10	2.28	2.28	2.28	-	-	-	-	-	-
20	2.36	2.37	2.37	2.37	2.37	-	-	-	-
30	2.45	2.46	2.47	2.48	2.48	2.47	-	-	-
40	-	2.59	2.61	2.62	2.62	2.61	2.59	2.57	-
50	-	-	2.80	2.82	2.82	2.81	2.79	2.76	-
60	-	-	-	3.09	3.10	3.09	3.07	3.04	-
70	-	-	-	3.44	3.47	3.47	3.45	3.42	-
73	-	-	-	-	3.60	3.61	3.58	3.56	-
/lass flow in kg/l	h								
10	48	59	72	-	_	_	_	_	_
20	47	58	72	88	107	_	_	_	_
30	46	58	71	87	106	128	_	_	_
40	-	56	70	85	104	126	152	170	_
50	_	-	68	83	102	124	150	167	_
60	_	_	-	81	99	121	146	164	_
70		-	_	79	96	118	143	160	_
73		_	-	-	96	116	141	158	
<u>I</u>			<u>.</u>	<u>.</u>					
Coefficient of pe		1	T	Т	1		ı		
10	4.65	5.65	6.86	-	-	-	-	-	-
20	3.41	4.15	5.07	6.19	7.49	-	-	-	-
30	2.53	3.07	3.75	4.57	5.57	6.75	-	-	-
40	-	2.26	2.74	3.33	4.06	4.93	5.97	6.68	-
50	-	-	1.97	2.38	2.88	3.50	4.24	4.76	-
60	-	-	-	1.65	1.99	2.40	2.91	3.26	-
70	-	-	-	1.11	1.32	1.59	1.91	2.14	-
73	_	-	-	_	1.16	1.39	1.67	1.87	-

Nominal performance at to = -10 °C, tc = 45 °C

Coolir	ig capacity	2 102	W	
Powe	r input	1 091	W	
Curre	nt consumption	2.67	Α	
Mass	flow	56	kg/h	
C.O.P		1.93		

to: Evaporating temperature at dew point

Rating conditions : Suction gas temp. = $20 \, ^{\circ}\text{C}$, Subcooling = $0 \, \text{K}$

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 50 Hz, EN 12900 rating conditions, Superheat = 10 K

R513A

Cond. temp. in				Evapora	ting temperature	in °C (to)			
°C (tc)	-15	-10	-5	0	5	10	15	18	
Cooling capaci		T	T		T		T	T T	
10	2 442	3 008	3 697	-	-	-	-	-	-
20	2 208	2 737	3 378	4 143	5 044	-	-	-	-
30	1 963	2 450	3 036	3 736	4 560	5 521	-	-	-
40	1 710	2 149	2 676	3 304	4 047	4 917	5 924	6 597	-
50	-	1 838	2 300	2 851	3 507	4 280	5 183	5 791	-
60	-	-	1 911	2 381	2 944	3 615	4 408	4 948	-
70	-	-	-	1 895	2 360	2 924	3 602	4 071	-
73	-	-	-	1 747	2 182	2 712	3 355	3 802	-
Power input in	w								
10	535	540	544	_	_	_	_	_	_
20	666	674	676	676	676	-	_	-	
30	808	824	829	829	824	817	_	_	
40	967	995	1 009	1 013	1 008	997	984	975	
50	-	1 194	1 222	1 234	1 234	1 224	1 207	1 195	
60	-	-	1 472	1 499	1 508	1 504	1 488	1 474	-
70	-	-	- 1472	1 812	1 836	1 842	1 833	1 821	-
73	-	-	-	1 916	1 946	1 956	1 950	1 939	<u> </u>
13	-	-	-	1916	1 946	1 956	1 950	1 939	
Current consu	mption in A								
10	2.28	2.28	2.28	-	_	_		-	-
20	2.36	2.37	2.37	2.37	2.37	_	_	_	
30	2.45	2.46	2.47	2.48	2.48	2.47	_	_	
40	2.57	2.59	2.61	2.62	2.62	2.61	2.59	2.57	_
50	-	2.77	2.80	2.82	2.82	2.81	2.79	2.76	
60	-	-	3.06	3.09	3.10	3.09	3.07	3.04	
70	-	-	3.00	3.44	3.47	3.47	3.45	3.42	
73	-	-	-	3.57	3.60	3.61	3.58	3.56	-
73				3.37	3.00	3.01	3.36	3.30	
Mass flow in kg	a/h								
10	53	64	77	_	_	_		_	-
20	52	63	76	92	109	_	_	_	_
30	51	62	75	91	108	128	_	_	_
40	50	61	74	89	106	126	149	163	_
50	-	60	72	87	104	124	146	161	_
60	-	-	70	85	102	121	143	158	
70	-	-	-	82	99	118	139	154	-
73	-	-	-	81	98	116	138	152	
13	I -	I -	I -	1 01	1 30	1 110	100	102	
Coefficient of p	performance (C.C	D.P.)							
10	4.56	5.57	6.79	-	-	-		-	-
20	3.31	4.06	5.00	6.13	7.46	-	-	-	-
30	2.43	2.97	3.66	4.51	5.54	6.75	-	-	-
40	1.77	2.16	2.65	3.26	4.02	4.93	6.02	6.76	-
50	-	1.54	1.88	2.31	2.84	3.50	4.29	4.85	-
	-	-	1.30	1.59	1.95	2.40	2.96	3.36	-
60									
	-	-	-	1.05	1.29	1.59	1.97	2.24	-

Nominal performance at to = -10 °C, tc = 45 °C

	-,	
Cooling capacity	1 994	W
Power input	1 091	W
Current consumption	2.67	Α
Mass flow	61	kg/h
C.O.P.	1.83	

to: Evaporating temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K

Pressure switch settings

	Maximum HP switch setting	29.7	bar(g)
	Minimum LP switch setting	1.4	bar(g)
L	LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Suction temp. = 20 °C

R513A

Cond. temp. in	Evaporating temperature in °C (to)								
°C (tc)	-15	-10	-5	0	5	10	15	18	
0	: \								
Cooling capacity	2 957	3 618	4 424	_	_	_	_	-	
		1	1			-	-	-	-
20	2 714	3 336	4 090	4 989	6 044	+			
30	2 453	3 025	3 717	4 540	5 506	6 627	7.000	- 7,000	-
40	-	2 696	3 314	4 050	4 917	5 926	7 088	7 863	-
50	-	-	2 890	3 529	4 285	5 170	6 196	6 884	-
60	-	-	-	2 985	3 620	4 370	5 249	5 843	-
70	-	-	-	2 429	2 930	3 535	4 256	4 749	-
73	-	-	-	-	2 720	3 280	3 951	4 412	-
Power input in W	1								
10	671	665	662	-	-	-	-	-	-
20	828	831	828	825	829	-	-	-	-
30	991	1 011	1 017	1 014	1 008	1 007	-	-	-
40	-	1 210	1 233	1 238	1 232	1 222	1 212	1 210	-
50	-	-	1 481	1 503	1 505	1 493	1 474	1 461	-
60	-	-	-	1 811	1 830	1 825	1 805	1 787	-
70	-	-	-	2 167	2 211	2 223	2 210	2 192	-
73	-	-	-	-	2 337	2 355	2 346	2 330	-
					•	•	•		
Current consump		0.40		1	<u> </u>	1	1		
10	2.17	2.18	2.20	-	-	-	-	-	-
20	2.26	2.27	2.28	2.29	2.30	-	-	-	-
30	2.37	2.38	2.39	2.40	2.40	2.39	-	-	-
40	-	2.53	2.55	2.56	2.56	2.55	2.50	2.46	-
50	-	-	2.76	2.78	2.79	2.78	2.74	2.70	-
60	-	-	-	3.07	3.10	3.10	3.06	3.03	-
70	-	-	-	3.45	3.49	3.51	3.49	3.46	-
73	-	-	-	-	3.63	3.65	3.64	3.61	-
Mass flow in kg/h	1								
10	57	70	86	_	-	-	_	_	_
20	56	70	86	105	127	-	-	-	_
30	55	69	85	104	127	154	-	-	_
40	-	68	83	102	125	152	184	205	-
50	-	-	82	100	123	150	181	203	_
60	-	-	-	98	120	146	177	199	_
70	_	-	-	95	116	142	173	194	_
73	-	_	_	-	115	141	171	192	
<u>'</u>		1	•		•		•	· · · · · · · · · · · · · · · · · · ·	
Coefficient of per	•	T .	0.00		<u> </u>		1	<u> </u>	
10	4.41	5.44	6.68	-	-	-	-	-	-
20	3.28	4.01	4.94	6.05	7.29	-	-	-	-
30	2.48	2.99	3.66	4.48	5.46	6.58	-	-	-
40	-	2.23	2.69	3.27	3.99	4.85	5.85	6.50	-
50	-	-	1.95	2.35	2.85	3.46	4.20	4.71	-
60	-	-	-	1.65	1.98	2.39	2.91	3.27	-
70	-	-	-	1.12	1.33	1.59	1.93	2.17	-
73	-	-	-	-	1.16	1.39	1.68	1.89	-

Nominal performance at to = -10 °C, tc = 45 °C

	,		
Cooling capacity	2 527	W	
Power input	1 318	W	
Current consumption	2.62	Α	
Mass flow	67	kg/h	
C.O.P.	1.92		

to: Evaporating temperature at dew point

Rating conditions : Suction gas temp. = 20 °C , Subcooling = 0 K

Pressure switch settings

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Tolerance according EN12900

tc: Condensing temperature at dew point

Scroll compressor. MLZ015T4

Performance data at 60 Hz, EN 12900 rating conditions, Superheat = 10 K

R513A

Cooling capacity in W										Cond. temp. in Evaporating temperature in °C (to)					
10		18	15	10	5	0	-5	-10	-15	°C (tc)					
10															
20								1							
30	-									-					
40	-	-													
So															
60									2 062	-					
70	-	7 017						2 216	-						
Tower input in W Tower input	-						2 307	-	-						
	-	4 949			2 850	2 293	-	-	-						
10	-	4 623	4 070	3 280	2 636	2 120	-	-	-	73					
10									v	Power input in V					
20	_	_	_	-	_	-	662	665							
30 991 1 011 1 017 1 014 1 008 1 007 - -	_		_												
40	_		_	1 007						-					
So	_														
60	_								+						
TO	-									-					
Current consumption in A 10	-	•													
10	-									-					
10		2 000	2 0 10	2 000	2 001	2 201		I	l	7.0					
10									ption in A	urrent consum					
20	_	_	_	_	_	_	2.20	2.18							
30	_	_	_	_	2 30	2 29				1					
40	_														
50	_														
60 3.03 3.07 3.10 3.10 3.06 3.03 70 3.45 3.49 3.51 3.49 3.46 73 3.58 3.68 3.63 3.65 3.64 3.61 3.61 3.68	_														
To	_														
Mass flow in kg/h	_									-					
Mass flow in kg/h	_														
10 63 76 91		0.01	0.01	0.00	0.00	0.00				70					
10 63 76 91 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>h</td> <td>/lass flow in kg/</td>									h	/lass flow in kg/					
20 62 76 91 109 130 -	_	_	_	_	_	_	91	76							
30	_														
40 60 73 89 107 128 152 179 197 50 - 72 87 105 125 150 177 195 60 - - 85 102 122 146 173 191 70 - - - 100 119 142 169 186 73 - - - 99 118 141 167 185 Softient of performance (C.O.P.) Softi	_									-					
50 - 72 87 105 125 150 177 195 60 - - 85 102 122 146 173 191 70 - - - 100 119 142 169 186 73 - - - 99 118 141 167 185 Soefficient of performance (C.O.P.) 10 4.32 5.36 6.62 - - - - - - 20 3.18 3.93 4.86 5.99 7.26 - <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_														
60 - - 85 102 122 146 173 191 70 - - - 100 119 142 169 186 73 - - - 99 118 141 167 185 Soefficient of performance (C.O.P.) 10 4.32 5.36 6.62 -	_									-					
70 - - - 100 119 142 169 186 73 - - - 99 118 141 167 185 Seefficient of performance (C.O.P.) 10 4.32 5.36 6.62 -															
73 - - 99 118 141 167 185 Coefficient of performance (C.O.P.) 10 4.32 5.36 6.62 -	-														
Coefficient of performance (C.O.P.) 10 4.32 5.36 6.62 - - - - - - 20 3.18 3.93 4.86 5.99 7.26 - - - - 30 2.37 2.90 3.57 4.41 5.42 6.58 - - - 40 1.77 2.13 2.60 3.20 3.95 4.85 5.90 6.58 50 - 1.55 1.87 2.28 2.81 3.46 4.26 4.80 60 - - 1.31 1.58 1.94 2.39 2.96 3.36 70 - - - 1.06 1.29 1.59 1.98 2.26	-														
10 4.32 5.36 6.62 - - - - - - 20 3.18 3.93 4.86 5.99 7.26 - - - - 30 2.37 2.90 3.57 4.41 5.42 6.58 - - - 40 1.77 2.13 2.60 3.20 3.95 4.85 5.90 6.58 50 - 1.55 1.87 2.28 2.81 3.46 4.26 4.80 60 - - 1.31 1.58 1.94 2.39 2.96 3.36 70 - - - 1.06 1.29 1.59 1.98 2.26		100	107	171	110	<i>33</i>	<u>-</u>	-	-	10					
20 3.18 3.93 4.86 5.99 7.26 - - - 30 2.37 2.90 3.57 4.41 5.42 6.58 - - 40 1.77 2.13 2.60 3.20 3.95 4.85 5.90 6.58 50 - 1.55 1.87 2.28 2.81 3.46 4.26 4.80 60 - - 1.31 1.58 1.94 2.39 2.96 3.36 70 - - 1.06 1.29 1.59 1.98 2.26			1				0.00	-	` '						
30 2.37 2.90 3.57 4.41 5.42 6.58 - - 40 1.77 2.13 2.60 3.20 3.95 4.85 5.90 6.58 50 - 1.55 1.87 2.28 2.81 3.46 4.26 4.80 60 - - 1.31 1.58 1.94 2.39 2.96 3.36 70 - - 1.06 1.29 1.59 1.98 2.26	-									-					
40 1.77 2.13 2.60 3.20 3.95 4.85 5.90 6.58 50 - 1.55 1.87 2.28 2.81 3.46 4.26 4.80 60 - - 1.31 1.58 1.94 2.39 2.96 3.36 70 - - 1.06 1.29 1.59 1.98 2.26	-														
50 - 1.55 1.87 2.28 2.81 3.46 4.26 4.80 60 - - 1.31 1.58 1.94 2.39 2.96 3.36 70 - - - 1.06 1.29 1.59 1.98 2.26	-														
60 - - 1.31 1.58 1.94 2.39 2.96 3.36 70 - - - 1.06 1.29 1.59 1.98 2.26	-														
70 1.06 1.29 1.59 1.98 2.26	-									-					
	-														
73 0.93 1.13 1.39 1.73 1.98	-						-	-	-						
	-	1.98	1.73	1.39	1.13	0.93	-	-	-	73					

to: Evaporating	temperature	at dew point

Cooling capacity

Current consumption

Power input

Mass flow

C.O.P.

Maximum HP switch setting	29.7	bar(g)
Minimum LP switch setting	1.4	bar(g)
LP pump down setting	2	bar(g)

Sound power data

Sound power level	dB(A)
With accoustic hood	dB(A)

Tolerance according EN12900

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

W

W

kg/h

2 397

1 318

2.62

1.82

73

tc: Condensing temperature at dew point

Rating conditions : Superheat = 10 K , Subcooling = 0 K